| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671 |
- <!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN" "http://www.w3.org/TR/html4/loose.dtd">
- <!-- NewPage -->
- <html lang="en">
- <head>
- <!-- Generated by javadoc (1.8.0_312) on Wed Jun 28 12:47:24 UTC 2023 -->
- <meta http-equiv="Content-Type" content="text/html; charset=UTF-8">
- <title>SVM (OpenCV 4.8.0 Java documentation)</title>
- <meta name="date" content="2023-06-28">
- <link rel="stylesheet" type="text/css" href="../../../stylesheet.css" title="Style">
- <script type="text/javascript" src="../../../script.js"></script>
- </head>
- <body>
- <script type="text/javascript"><!--
- try {
- if (location.href.indexOf('is-external=true') == -1) {
- parent.document.title="SVM (OpenCV 4.8.0 Java documentation)";
- }
- }
- catch(err) {
- }
- //-->
- var methods = {"i0":9,"i1":9,"i2":10,"i3":10,"i4":10,"i5":10,"i6":9,"i7":10,"i8":10,"i9":10,"i10":10,"i11":10,"i12":10,"i13":10,"i14":10,"i15":10,"i16":9,"i17":10,"i18":10,"i19":10,"i20":10,"i21":10,"i22":10,"i23":10,"i24":10,"i25":10,"i26":10,"i27":10,"i28":10,"i29":10,"i30":10,"i31":10,"i32":10,"i33":10,"i34":10,"i35":10};
- var tabs = {65535:["t0","All Methods"],1:["t1","Static Methods"],2:["t2","Instance Methods"],8:["t4","Concrete Methods"]};
- var altColor = "altColor";
- var rowColor = "rowColor";
- var tableTab = "tableTab";
- var activeTableTab = "activeTableTab";
- </script>
- <noscript>
- <div>JavaScript is disabled on your browser.</div>
- </noscript>
- <!-- ========= START OF TOP NAVBAR ======= -->
- <div class="topNav"><a name="navbar.top">
- <!-- -->
- </a>
- <div class="skipNav"><a href="#skip.navbar.top" title="Skip navigation links">Skip navigation links</a></div>
- <a name="navbar.top.firstrow">
- <!-- -->
- </a>
- <ul class="navList" title="Navigation">
- <li><a href="../../../overview-summary.html">Overview</a></li>
- <li><a href="package-summary.html">Package</a></li>
- <li class="navBarCell1Rev">Class</li>
- <li><a href="package-tree.html">Tree</a></li>
- <li><a href="../../../index-all.html">Index</a></li>
- <li><a href="../../../help-doc.html">Help</a></li>
- </ul>
- <div class="aboutLanguage">
- <script>
- var url = window.location.href;
- var pos = url.lastIndexOf('/javadoc/');
- url = pos >= 0 ? (url.substring(0, pos) + '/javadoc/mymath.js') : (window.location.origin + '/mymath.js');
- var script = document.createElement('script');
- script.src = 'https://cdnjs.cloudflare.com/ajax/libs/mathjax/2.7.0/MathJax.js?config=TeX-AMS-MML_HTMLorMML,' + url;
- document.getElementsByTagName('head')[0].appendChild(script);
- </script>
- </div>
- </div>
- <div class="subNav">
- <ul class="navList">
- <li><a href="../../../org/opencv/ml/StatModel.html" title="class in org.opencv.ml"><span class="typeNameLink">Prev Class</span></a></li>
- <li><a href="../../../org/opencv/ml/SVMSGD.html" title="class in org.opencv.ml"><span class="typeNameLink">Next Class</span></a></li>
- </ul>
- <ul class="navList">
- <li><a href="../../../index.html?org/opencv/ml/SVM.html" target="_top">Frames</a></li>
- <li><a href="SVM.html" target="_top">No Frames</a></li>
- </ul>
- <ul class="navList" id="allclasses_navbar_top">
- <li><a href="../../../allclasses-noframe.html">All Classes</a></li>
- </ul>
- <div>
- <script type="text/javascript"><!--
- allClassesLink = document.getElementById("allclasses_navbar_top");
- if(window==top) {
- allClassesLink.style.display = "block";
- }
- else {
- allClassesLink.style.display = "none";
- }
- //-->
- </script>
- </div>
- <div>
- <ul class="subNavList">
- <li>Summary: </li>
- <li>Nested | </li>
- <li><a href="#field.summary">Field</a> | </li>
- <li>Constr | </li>
- <li><a href="#method.summary">Method</a></li>
- </ul>
- <ul class="subNavList">
- <li>Detail: </li>
- <li><a href="#field.detail">Field</a> | </li>
- <li>Constr | </li>
- <li><a href="#method.detail">Method</a></li>
- </ul>
- </div>
- <a name="skip.navbar.top">
- <!-- -->
- </a></div>
- <!-- ========= END OF TOP NAVBAR ========= -->
- <!-- ======== START OF CLASS DATA ======== -->
- <div class="header">
- <div class="subTitle">org.opencv.ml</div>
- <h2 title="Class SVM" class="title">Class SVM</h2>
- </div>
- <div class="contentContainer">
- <ul class="inheritance">
- <li>java.lang.Object</li>
- <li>
- <ul class="inheritance">
- <li><a href="../../../org/opencv/core/Algorithm.html" title="class in org.opencv.core">org.opencv.core.Algorithm</a></li>
- <li>
- <ul class="inheritance">
- <li><a href="../../../org/opencv/ml/StatModel.html" title="class in org.opencv.ml">org.opencv.ml.StatModel</a></li>
- <li>
- <ul class="inheritance">
- <li>org.opencv.ml.SVM</li>
- </ul>
- </li>
- </ul>
- </li>
- </ul>
- </li>
- </ul>
- <div class="description">
- <ul class="blockList">
- <li class="blockList">
- <hr>
- <br>
- <pre>public class <span class="typeNameLabel">SVM</span>
- extends <a href="../../../org/opencv/ml/StatModel.html" title="class in org.opencv.ml">StatModel</a></pre>
- <div class="block">Support Vector Machines.
- SEE: REF: ml_intro_svm</div>
- </li>
- </ul>
- </div>
- <div class="summary">
- <ul class="blockList">
- <li class="blockList">
- <!-- =========== FIELD SUMMARY =========== -->
- <ul class="blockList">
- <li class="blockList"><a name="field.summary">
- <!-- -->
- </a>
- <h3>Field Summary</h3>
- <table class="memberSummary" border="0" cellpadding="3" cellspacing="0" summary="Field Summary table, listing fields, and an explanation">
- <caption><span>Fields</span><span class="tabEnd"> </span></caption>
- <tr>
- <th class="colFirst" scope="col">Modifier and Type</th>
- <th class="colLast" scope="col">Field and Description</th>
- </tr>
- <tr class="altColor">
- <td class="colFirst"><code>static int</code></td>
- <td class="colLast"><code><span class="memberNameLink"><a href="../../../org/opencv/ml/SVM.html#C">C</a></span></code> </td>
- </tr>
- <tr class="rowColor">
- <td class="colFirst"><code>static int</code></td>
- <td class="colLast"><code><span class="memberNameLink"><a href="../../../org/opencv/ml/SVM.html#C_SVC">C_SVC</a></span></code> </td>
- </tr>
- <tr class="altColor">
- <td class="colFirst"><code>static int</code></td>
- <td class="colLast"><code><span class="memberNameLink"><a href="../../../org/opencv/ml/SVM.html#CHI2">CHI2</a></span></code> </td>
- </tr>
- <tr class="rowColor">
- <td class="colFirst"><code>static int</code></td>
- <td class="colLast"><code><span class="memberNameLink"><a href="../../../org/opencv/ml/SVM.html#COEF">COEF</a></span></code> </td>
- </tr>
- <tr class="altColor">
- <td class="colFirst"><code>static int</code></td>
- <td class="colLast"><code><span class="memberNameLink"><a href="../../../org/opencv/ml/SVM.html#CUSTOM">CUSTOM</a></span></code> </td>
- </tr>
- <tr class="rowColor">
- <td class="colFirst"><code>static int</code></td>
- <td class="colLast"><code><span class="memberNameLink"><a href="../../../org/opencv/ml/SVM.html#DEGREE">DEGREE</a></span></code> </td>
- </tr>
- <tr class="altColor">
- <td class="colFirst"><code>static int</code></td>
- <td class="colLast"><code><span class="memberNameLink"><a href="../../../org/opencv/ml/SVM.html#EPS_SVR">EPS_SVR</a></span></code> </td>
- </tr>
- <tr class="rowColor">
- <td class="colFirst"><code>static int</code></td>
- <td class="colLast"><code><span class="memberNameLink"><a href="../../../org/opencv/ml/SVM.html#GAMMA">GAMMA</a></span></code> </td>
- </tr>
- <tr class="altColor">
- <td class="colFirst"><code>static int</code></td>
- <td class="colLast"><code><span class="memberNameLink"><a href="../../../org/opencv/ml/SVM.html#INTER">INTER</a></span></code> </td>
- </tr>
- <tr class="rowColor">
- <td class="colFirst"><code>static int</code></td>
- <td class="colLast"><code><span class="memberNameLink"><a href="../../../org/opencv/ml/SVM.html#LINEAR">LINEAR</a></span></code> </td>
- </tr>
- <tr class="altColor">
- <td class="colFirst"><code>static int</code></td>
- <td class="colLast"><code><span class="memberNameLink"><a href="../../../org/opencv/ml/SVM.html#NU">NU</a></span></code> </td>
- </tr>
- <tr class="rowColor">
- <td class="colFirst"><code>static int</code></td>
- <td class="colLast"><code><span class="memberNameLink"><a href="../../../org/opencv/ml/SVM.html#NU_SVC">NU_SVC</a></span></code> </td>
- </tr>
- <tr class="altColor">
- <td class="colFirst"><code>static int</code></td>
- <td class="colLast"><code><span class="memberNameLink"><a href="../../../org/opencv/ml/SVM.html#NU_SVR">NU_SVR</a></span></code> </td>
- </tr>
- <tr class="rowColor">
- <td class="colFirst"><code>static int</code></td>
- <td class="colLast"><code><span class="memberNameLink"><a href="../../../org/opencv/ml/SVM.html#ONE_CLASS">ONE_CLASS</a></span></code> </td>
- </tr>
- <tr class="altColor">
- <td class="colFirst"><code>static int</code></td>
- <td class="colLast"><code><span class="memberNameLink"><a href="../../../org/opencv/ml/SVM.html#P">P</a></span></code> </td>
- </tr>
- <tr class="rowColor">
- <td class="colFirst"><code>static int</code></td>
- <td class="colLast"><code><span class="memberNameLink"><a href="../../../org/opencv/ml/SVM.html#POLY">POLY</a></span></code> </td>
- </tr>
- <tr class="altColor">
- <td class="colFirst"><code>static int</code></td>
- <td class="colLast"><code><span class="memberNameLink"><a href="../../../org/opencv/ml/SVM.html#RBF">RBF</a></span></code> </td>
- </tr>
- <tr class="rowColor">
- <td class="colFirst"><code>static int</code></td>
- <td class="colLast"><code><span class="memberNameLink"><a href="../../../org/opencv/ml/SVM.html#SIGMOID">SIGMOID</a></span></code> </td>
- </tr>
- </table>
- <ul class="blockList">
- <li class="blockList"><a name="fields.inherited.from.class.org.opencv.ml.StatModel">
- <!-- -->
- </a>
- <h3>Fields inherited from class org.opencv.ml.<a href="../../../org/opencv/ml/StatModel.html" title="class in org.opencv.ml">StatModel</a></h3>
- <code><a href="../../../org/opencv/ml/StatModel.html#COMPRESSED_INPUT">COMPRESSED_INPUT</a>, <a href="../../../org/opencv/ml/StatModel.html#PREPROCESSED_INPUT">PREPROCESSED_INPUT</a>, <a href="../../../org/opencv/ml/StatModel.html#RAW_OUTPUT">RAW_OUTPUT</a>, <a href="../../../org/opencv/ml/StatModel.html#UPDATE_MODEL">UPDATE_MODEL</a></code></li>
- </ul>
- </li>
- </ul>
- <!-- ========== METHOD SUMMARY =========== -->
- <ul class="blockList">
- <li class="blockList"><a name="method.summary">
- <!-- -->
- </a>
- <h3>Method Summary</h3>
- <table class="memberSummary" border="0" cellpadding="3" cellspacing="0" summary="Method Summary table, listing methods, and an explanation">
- <caption><span id="t0" class="activeTableTab"><span>All Methods</span><span class="tabEnd"> </span></span><span id="t1" class="tableTab"><span><a href="javascript:show(1);">Static Methods</a></span><span class="tabEnd"> </span></span><span id="t2" class="tableTab"><span><a href="javascript:show(2);">Instance Methods</a></span><span class="tabEnd"> </span></span><span id="t4" class="tableTab"><span><a href="javascript:show(8);">Concrete Methods</a></span><span class="tabEnd"> </span></span></caption>
- <tr>
- <th class="colFirst" scope="col">Modifier and Type</th>
- <th class="colLast" scope="col">Method and Description</th>
- </tr>
- <tr id="i0" class="altColor">
- <td class="colFirst"><code>static <a href="../../../org/opencv/ml/SVM.html" title="class in org.opencv.ml">SVM</a></code></td>
- <td class="colLast"><code><span class="memberNameLink"><a href="../../../org/opencv/ml/SVM.html#Z:Z__fromPtr__-long-">__fromPtr__</a></span>(long addr)</code> </td>
- </tr>
- <tr id="i1" class="rowColor">
- <td class="colFirst"><code>static <a href="../../../org/opencv/ml/SVM.html" title="class in org.opencv.ml">SVM</a></code></td>
- <td class="colLast"><code><span class="memberNameLink"><a href="../../../org/opencv/ml/SVM.html#create--">create</a></span>()</code>
- <div class="block">Creates empty model.</div>
- </td>
- </tr>
- <tr id="i2" class="altColor">
- <td class="colFirst"><code>double</code></td>
- <td class="colLast"><code><span class="memberNameLink"><a href="../../../org/opencv/ml/SVM.html#getC--">getC</a></span>()</code>
- <div class="block">SEE: setC</div>
- </td>
- </tr>
- <tr id="i3" class="rowColor">
- <td class="colFirst"><code><a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a></code></td>
- <td class="colLast"><code><span class="memberNameLink"><a href="../../../org/opencv/ml/SVM.html#getClassWeights--">getClassWeights</a></span>()</code>
- <div class="block">SEE: setClassWeights</div>
- </td>
- </tr>
- <tr id="i4" class="altColor">
- <td class="colFirst"><code>double</code></td>
- <td class="colLast"><code><span class="memberNameLink"><a href="../../../org/opencv/ml/SVM.html#getCoef0--">getCoef0</a></span>()</code>
- <div class="block">SEE: setCoef0</div>
- </td>
- </tr>
- <tr id="i5" class="rowColor">
- <td class="colFirst"><code>double</code></td>
- <td class="colLast"><code><span class="memberNameLink"><a href="../../../org/opencv/ml/SVM.html#getDecisionFunction-int-org.opencv.core.Mat-org.opencv.core.Mat-">getDecisionFunction</a></span>(int i,
- <a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a> alpha,
- <a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a> svidx)</code>
- <div class="block">Retrieves the decision function</div>
- </td>
- </tr>
- <tr id="i6" class="altColor">
- <td class="colFirst"><code>static <a href="../../../org/opencv/ml/ParamGrid.html" title="class in org.opencv.ml">ParamGrid</a></code></td>
- <td class="colLast"><code><span class="memberNameLink"><a href="../../../org/opencv/ml/SVM.html#getDefaultGridPtr-int-">getDefaultGridPtr</a></span>(int param_id)</code>
- <div class="block">Generates a grid for %SVM parameters.</div>
- </td>
- </tr>
- <tr id="i7" class="rowColor">
- <td class="colFirst"><code>double</code></td>
- <td class="colLast"><code><span class="memberNameLink"><a href="../../../org/opencv/ml/SVM.html#getDegree--">getDegree</a></span>()</code>
- <div class="block">SEE: setDegree</div>
- </td>
- </tr>
- <tr id="i8" class="altColor">
- <td class="colFirst"><code>double</code></td>
- <td class="colLast"><code><span class="memberNameLink"><a href="../../../org/opencv/ml/SVM.html#getGamma--">getGamma</a></span>()</code>
- <div class="block">SEE: setGamma</div>
- </td>
- </tr>
- <tr id="i9" class="rowColor">
- <td class="colFirst"><code>int</code></td>
- <td class="colLast"><code><span class="memberNameLink"><a href="../../../org/opencv/ml/SVM.html#getKernelType--">getKernelType</a></span>()</code>
- <div class="block">Type of a %SVM kernel.</div>
- </td>
- </tr>
- <tr id="i10" class="altColor">
- <td class="colFirst"><code>double</code></td>
- <td class="colLast"><code><span class="memberNameLink"><a href="../../../org/opencv/ml/SVM.html#getNu--">getNu</a></span>()</code>
- <div class="block">SEE: setNu</div>
- </td>
- </tr>
- <tr id="i11" class="rowColor">
- <td class="colFirst"><code>double</code></td>
- <td class="colLast"><code><span class="memberNameLink"><a href="../../../org/opencv/ml/SVM.html#getP--">getP</a></span>()</code>
- <div class="block">SEE: setP</div>
- </td>
- </tr>
- <tr id="i12" class="altColor">
- <td class="colFirst"><code><a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a></code></td>
- <td class="colLast"><code><span class="memberNameLink"><a href="../../../org/opencv/ml/SVM.html#getSupportVectors--">getSupportVectors</a></span>()</code>
- <div class="block">Retrieves all the support vectors
- The method returns all the support vectors as a floating-point matrix, where support vectors are
- stored as matrix rows.</div>
- </td>
- </tr>
- <tr id="i13" class="rowColor">
- <td class="colFirst"><code><a href="../../../org/opencv/core/TermCriteria.html" title="class in org.opencv.core">TermCriteria</a></code></td>
- <td class="colLast"><code><span class="memberNameLink"><a href="../../../org/opencv/ml/SVM.html#getTermCriteria--">getTermCriteria</a></span>()</code>
- <div class="block">SEE: setTermCriteria</div>
- </td>
- </tr>
- <tr id="i14" class="altColor">
- <td class="colFirst"><code>int</code></td>
- <td class="colLast"><code><span class="memberNameLink"><a href="../../../org/opencv/ml/SVM.html#getType--">getType</a></span>()</code>
- <div class="block">SEE: setType</div>
- </td>
- </tr>
- <tr id="i15" class="rowColor">
- <td class="colFirst"><code><a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a></code></td>
- <td class="colLast"><code><span class="memberNameLink"><a href="../../../org/opencv/ml/SVM.html#getUncompressedSupportVectors--">getUncompressedSupportVectors</a></span>()</code>
- <div class="block">Retrieves all the uncompressed support vectors of a linear %SVM
- The method returns all the uncompressed support vectors of a linear %SVM that the compressed
- support vector, used for prediction, was derived from.</div>
- </td>
- </tr>
- <tr id="i16" class="altColor">
- <td class="colFirst"><code>static <a href="../../../org/opencv/ml/SVM.html" title="class in org.opencv.ml">SVM</a></code></td>
- <td class="colLast"><code><span class="memberNameLink"><a href="../../../org/opencv/ml/SVM.html#load-java.lang.String-">load</a></span>(java.lang.String filepath)</code>
- <div class="block">Loads and creates a serialized svm from a file
- Use SVM::save to serialize and store an SVM to disk.</div>
- </td>
- </tr>
- <tr id="i17" class="rowColor">
- <td class="colFirst"><code>void</code></td>
- <td class="colLast"><code><span class="memberNameLink"><a href="../../../org/opencv/ml/SVM.html#setC-double-">setC</a></span>(double val)</code>
- <div class="block">getC SEE: getC</div>
- </td>
- </tr>
- <tr id="i18" class="altColor">
- <td class="colFirst"><code>void</code></td>
- <td class="colLast"><code><span class="memberNameLink"><a href="../../../org/opencv/ml/SVM.html#setClassWeights-org.opencv.core.Mat-">setClassWeights</a></span>(<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a> val)</code>
- <div class="block">getClassWeights SEE: getClassWeights</div>
- </td>
- </tr>
- <tr id="i19" class="rowColor">
- <td class="colFirst"><code>void</code></td>
- <td class="colLast"><code><span class="memberNameLink"><a href="../../../org/opencv/ml/SVM.html#setCoef0-double-">setCoef0</a></span>(double val)</code>
- <div class="block">getCoef0 SEE: getCoef0</div>
- </td>
- </tr>
- <tr id="i20" class="altColor">
- <td class="colFirst"><code>void</code></td>
- <td class="colLast"><code><span class="memberNameLink"><a href="../../../org/opencv/ml/SVM.html#setDegree-double-">setDegree</a></span>(double val)</code>
- <div class="block">getDegree SEE: getDegree</div>
- </td>
- </tr>
- <tr id="i21" class="rowColor">
- <td class="colFirst"><code>void</code></td>
- <td class="colLast"><code><span class="memberNameLink"><a href="../../../org/opencv/ml/SVM.html#setGamma-double-">setGamma</a></span>(double val)</code>
- <div class="block">getGamma SEE: getGamma</div>
- </td>
- </tr>
- <tr id="i22" class="altColor">
- <td class="colFirst"><code>void</code></td>
- <td class="colLast"><code><span class="memberNameLink"><a href="../../../org/opencv/ml/SVM.html#setKernel-int-">setKernel</a></span>(int kernelType)</code>
- <div class="block">Initialize with one of predefined kernels.</div>
- </td>
- </tr>
- <tr id="i23" class="rowColor">
- <td class="colFirst"><code>void</code></td>
- <td class="colLast"><code><span class="memberNameLink"><a href="../../../org/opencv/ml/SVM.html#setNu-double-">setNu</a></span>(double val)</code>
- <div class="block">getNu SEE: getNu</div>
- </td>
- </tr>
- <tr id="i24" class="altColor">
- <td class="colFirst"><code>void</code></td>
- <td class="colLast"><code><span class="memberNameLink"><a href="../../../org/opencv/ml/SVM.html#setP-double-">setP</a></span>(double val)</code>
- <div class="block">getP SEE: getP</div>
- </td>
- </tr>
- <tr id="i25" class="rowColor">
- <td class="colFirst"><code>void</code></td>
- <td class="colLast"><code><span class="memberNameLink"><a href="../../../org/opencv/ml/SVM.html#setTermCriteria-org.opencv.core.TermCriteria-">setTermCriteria</a></span>(<a href="../../../org/opencv/core/TermCriteria.html" title="class in org.opencv.core">TermCriteria</a> val)</code>
- <div class="block">getTermCriteria SEE: getTermCriteria</div>
- </td>
- </tr>
- <tr id="i26" class="altColor">
- <td class="colFirst"><code>void</code></td>
- <td class="colLast"><code><span class="memberNameLink"><a href="../../../org/opencv/ml/SVM.html#setType-int-">setType</a></span>(int val)</code>
- <div class="block">getType SEE: getType</div>
- </td>
- </tr>
- <tr id="i27" class="rowColor">
- <td class="colFirst"><code>boolean</code></td>
- <td class="colLast"><code><span class="memberNameLink"><a href="../../../org/opencv/ml/SVM.html#trainAuto-org.opencv.core.Mat-int-org.opencv.core.Mat-">trainAuto</a></span>(<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a> samples,
- int layout,
- <a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a> responses)</code>
- <div class="block">Trains an %SVM with optimal parameters</div>
- </td>
- </tr>
- <tr id="i28" class="altColor">
- <td class="colFirst"><code>boolean</code></td>
- <td class="colLast"><code><span class="memberNameLink"><a href="../../../org/opencv/ml/SVM.html#trainAuto-org.opencv.core.Mat-int-org.opencv.core.Mat-int-">trainAuto</a></span>(<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a> samples,
- int layout,
- <a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a> responses,
- int kFold)</code>
- <div class="block">Trains an %SVM with optimal parameters</div>
- </td>
- </tr>
- <tr id="i29" class="rowColor">
- <td class="colFirst"><code>boolean</code></td>
- <td class="colLast"><code><span class="memberNameLink"><a href="../../../org/opencv/ml/SVM.html#trainAuto-org.opencv.core.Mat-int-org.opencv.core.Mat-int-org.opencv.ml.ParamGrid-">trainAuto</a></span>(<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a> samples,
- int layout,
- <a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a> responses,
- int kFold,
- <a href="../../../org/opencv/ml/ParamGrid.html" title="class in org.opencv.ml">ParamGrid</a> Cgrid)</code>
- <div class="block">Trains an %SVM with optimal parameters</div>
- </td>
- </tr>
- <tr id="i30" class="altColor">
- <td class="colFirst"><code>boolean</code></td>
- <td class="colLast"><code><span class="memberNameLink"><a href="../../../org/opencv/ml/SVM.html#trainAuto-org.opencv.core.Mat-int-org.opencv.core.Mat-int-org.opencv.ml.ParamGrid-org.opencv.ml.ParamGrid-">trainAuto</a></span>(<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a> samples,
- int layout,
- <a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a> responses,
- int kFold,
- <a href="../../../org/opencv/ml/ParamGrid.html" title="class in org.opencv.ml">ParamGrid</a> Cgrid,
- <a href="../../../org/opencv/ml/ParamGrid.html" title="class in org.opencv.ml">ParamGrid</a> gammaGrid)</code>
- <div class="block">Trains an %SVM with optimal parameters</div>
- </td>
- </tr>
- <tr id="i31" class="rowColor">
- <td class="colFirst"><code>boolean</code></td>
- <td class="colLast"><code><span class="memberNameLink"><a href="../../../org/opencv/ml/SVM.html#trainAuto-org.opencv.core.Mat-int-org.opencv.core.Mat-int-org.opencv.ml.ParamGrid-org.opencv.ml.ParamGrid-org.opencv.ml.ParamGrid-">trainAuto</a></span>(<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a> samples,
- int layout,
- <a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a> responses,
- int kFold,
- <a href="../../../org/opencv/ml/ParamGrid.html" title="class in org.opencv.ml">ParamGrid</a> Cgrid,
- <a href="../../../org/opencv/ml/ParamGrid.html" title="class in org.opencv.ml">ParamGrid</a> gammaGrid,
- <a href="../../../org/opencv/ml/ParamGrid.html" title="class in org.opencv.ml">ParamGrid</a> pGrid)</code>
- <div class="block">Trains an %SVM with optimal parameters</div>
- </td>
- </tr>
- <tr id="i32" class="altColor">
- <td class="colFirst"><code>boolean</code></td>
- <td class="colLast"><code><span class="memberNameLink"><a href="../../../org/opencv/ml/SVM.html#trainAuto-org.opencv.core.Mat-int-org.opencv.core.Mat-int-org.opencv.ml.ParamGrid-org.opencv.ml.ParamGrid-org.opencv.ml.ParamGrid-org.opencv.ml.ParamGrid-">trainAuto</a></span>(<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a> samples,
- int layout,
- <a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a> responses,
- int kFold,
- <a href="../../../org/opencv/ml/ParamGrid.html" title="class in org.opencv.ml">ParamGrid</a> Cgrid,
- <a href="../../../org/opencv/ml/ParamGrid.html" title="class in org.opencv.ml">ParamGrid</a> gammaGrid,
- <a href="../../../org/opencv/ml/ParamGrid.html" title="class in org.opencv.ml">ParamGrid</a> pGrid,
- <a href="../../../org/opencv/ml/ParamGrid.html" title="class in org.opencv.ml">ParamGrid</a> nuGrid)</code>
- <div class="block">Trains an %SVM with optimal parameters</div>
- </td>
- </tr>
- <tr id="i33" class="rowColor">
- <td class="colFirst"><code>boolean</code></td>
- <td class="colLast"><code><span class="memberNameLink"><a href="../../../org/opencv/ml/SVM.html#trainAuto-org.opencv.core.Mat-int-org.opencv.core.Mat-int-org.opencv.ml.ParamGrid-org.opencv.ml.ParamGrid-org.opencv.ml.ParamGrid-org.opencv.ml.ParamGrid-org.opencv.ml.ParamGrid-">trainAuto</a></span>(<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a> samples,
- int layout,
- <a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a> responses,
- int kFold,
- <a href="../../../org/opencv/ml/ParamGrid.html" title="class in org.opencv.ml">ParamGrid</a> Cgrid,
- <a href="../../../org/opencv/ml/ParamGrid.html" title="class in org.opencv.ml">ParamGrid</a> gammaGrid,
- <a href="../../../org/opencv/ml/ParamGrid.html" title="class in org.opencv.ml">ParamGrid</a> pGrid,
- <a href="../../../org/opencv/ml/ParamGrid.html" title="class in org.opencv.ml">ParamGrid</a> nuGrid,
- <a href="../../../org/opencv/ml/ParamGrid.html" title="class in org.opencv.ml">ParamGrid</a> coeffGrid)</code>
- <div class="block">Trains an %SVM with optimal parameters</div>
- </td>
- </tr>
- <tr id="i34" class="altColor">
- <td class="colFirst"><code>boolean</code></td>
- <td class="colLast"><code><span class="memberNameLink"><a href="../../../org/opencv/ml/SVM.html#trainAuto-org.opencv.core.Mat-int-org.opencv.core.Mat-int-org.opencv.ml.ParamGrid-org.opencv.ml.ParamGrid-org.opencv.ml.ParamGrid-org.opencv.ml.ParamGrid-org.opencv.ml.ParamGrid-org.opencv.ml.ParamGrid-">trainAuto</a></span>(<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a> samples,
- int layout,
- <a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a> responses,
- int kFold,
- <a href="../../../org/opencv/ml/ParamGrid.html" title="class in org.opencv.ml">ParamGrid</a> Cgrid,
- <a href="../../../org/opencv/ml/ParamGrid.html" title="class in org.opencv.ml">ParamGrid</a> gammaGrid,
- <a href="../../../org/opencv/ml/ParamGrid.html" title="class in org.opencv.ml">ParamGrid</a> pGrid,
- <a href="../../../org/opencv/ml/ParamGrid.html" title="class in org.opencv.ml">ParamGrid</a> nuGrid,
- <a href="../../../org/opencv/ml/ParamGrid.html" title="class in org.opencv.ml">ParamGrid</a> coeffGrid,
- <a href="../../../org/opencv/ml/ParamGrid.html" title="class in org.opencv.ml">ParamGrid</a> degreeGrid)</code>
- <div class="block">Trains an %SVM with optimal parameters</div>
- </td>
- </tr>
- <tr id="i35" class="rowColor">
- <td class="colFirst"><code>boolean</code></td>
- <td class="colLast"><code><span class="memberNameLink"><a href="../../../org/opencv/ml/SVM.html#trainAuto-org.opencv.core.Mat-int-org.opencv.core.Mat-int-org.opencv.ml.ParamGrid-org.opencv.ml.ParamGrid-org.opencv.ml.ParamGrid-org.opencv.ml.ParamGrid-org.opencv.ml.ParamGrid-org.opencv.ml.ParamGrid-boolean-">trainAuto</a></span>(<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a> samples,
- int layout,
- <a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a> responses,
- int kFold,
- <a href="../../../org/opencv/ml/ParamGrid.html" title="class in org.opencv.ml">ParamGrid</a> Cgrid,
- <a href="../../../org/opencv/ml/ParamGrid.html" title="class in org.opencv.ml">ParamGrid</a> gammaGrid,
- <a href="../../../org/opencv/ml/ParamGrid.html" title="class in org.opencv.ml">ParamGrid</a> pGrid,
- <a href="../../../org/opencv/ml/ParamGrid.html" title="class in org.opencv.ml">ParamGrid</a> nuGrid,
- <a href="../../../org/opencv/ml/ParamGrid.html" title="class in org.opencv.ml">ParamGrid</a> coeffGrid,
- <a href="../../../org/opencv/ml/ParamGrid.html" title="class in org.opencv.ml">ParamGrid</a> degreeGrid,
- boolean balanced)</code>
- <div class="block">Trains an %SVM with optimal parameters</div>
- </td>
- </tr>
- </table>
- <ul class="blockList">
- <li class="blockList"><a name="methods.inherited.from.class.org.opencv.ml.StatModel">
- <!-- -->
- </a>
- <h3>Methods inherited from class org.opencv.ml.<a href="../../../org/opencv/ml/StatModel.html" title="class in org.opencv.ml">StatModel</a></h3>
- <code><a href="../../../org/opencv/ml/StatModel.html#calcError-org.opencv.ml.TrainData-boolean-org.opencv.core.Mat-">calcError</a>, <a href="../../../org/opencv/ml/StatModel.html#empty--">empty</a>, <a href="../../../org/opencv/ml/StatModel.html#getVarCount--">getVarCount</a>, <a href="../../../org/opencv/ml/StatModel.html#isClassifier--">isClassifier</a>, <a href="../../../org/opencv/ml/StatModel.html#isTrained--">isTrained</a>, <a href="../../../org/opencv/ml/StatModel.html#predict-org.opencv.core.Mat-">predict</a>, <a href="../../../org/opencv/ml/StatModel.html#predict-org.opencv.core.Mat-org.opencv.core.Mat-">predict</a>, <a href="../../../org/opencv/ml/StatModel.html#predict-org.opencv.core.Mat-org.opencv.core.Mat-int-">predict</a>, <a href="../../../org/opencv/ml/StatModel.html#train-org.opencv.core.Mat-int-org.opencv.core.Mat-">train</a>, <a href="../../../org/opencv/ml/StatModel.html#train-org.opencv.ml.TrainData-">train</a>, <a href="../../../org/opencv/ml/StatModel.html#train-org.opencv.ml.TrainData-int-">train</a></code></li>
- </ul>
- <ul class="blockList">
- <li class="blockList"><a name="methods.inherited.from.class.org.opencv.core.Algorithm">
- <!-- -->
- </a>
- <h3>Methods inherited from class org.opencv.core.<a href="../../../org/opencv/core/Algorithm.html" title="class in org.opencv.core">Algorithm</a></h3>
- <code><a href="../../../org/opencv/core/Algorithm.html#clear--">clear</a>, <a href="../../../org/opencv/core/Algorithm.html#getDefaultName--">getDefaultName</a>, <a href="../../../org/opencv/core/Algorithm.html#getNativeObjAddr--">getNativeObjAddr</a>, <a href="../../../org/opencv/core/Algorithm.html#save-java.lang.String-">save</a></code></li>
- </ul>
- <ul class="blockList">
- <li class="blockList"><a name="methods.inherited.from.class.java.lang.Object">
- <!-- -->
- </a>
- <h3>Methods inherited from class java.lang.Object</h3>
- <code>equals, getClass, hashCode, notify, notifyAll, toString, wait, wait, wait</code></li>
- </ul>
- </li>
- </ul>
- </li>
- </ul>
- </div>
- <div class="details">
- <ul class="blockList">
- <li class="blockList">
- <!-- ============ FIELD DETAIL =========== -->
- <ul class="blockList">
- <li class="blockList"><a name="field.detail">
- <!-- -->
- </a>
- <h3>Field Detail</h3>
- <a name="C">
- <!-- -->
- </a>
- <ul class="blockList">
- <li class="blockList">
- <h4>C</h4>
- <pre>public static final int C</pre>
- <dl>
- <dt><span class="seeLabel">See Also:</span></dt>
- <dd><a href="../../../constant-values.html#org.opencv.ml.SVM.C">Constant Field Values</a></dd>
- </dl>
- </li>
- </ul>
- <a name="C_SVC">
- <!-- -->
- </a>
- <ul class="blockList">
- <li class="blockList">
- <h4>C_SVC</h4>
- <pre>public static final int C_SVC</pre>
- <dl>
- <dt><span class="seeLabel">See Also:</span></dt>
- <dd><a href="../../../constant-values.html#org.opencv.ml.SVM.C_SVC">Constant Field Values</a></dd>
- </dl>
- </li>
- </ul>
- <a name="CHI2">
- <!-- -->
- </a>
- <ul class="blockList">
- <li class="blockList">
- <h4>CHI2</h4>
- <pre>public static final int CHI2</pre>
- <dl>
- <dt><span class="seeLabel">See Also:</span></dt>
- <dd><a href="../../../constant-values.html#org.opencv.ml.SVM.CHI2">Constant Field Values</a></dd>
- </dl>
- </li>
- </ul>
- <a name="COEF">
- <!-- -->
- </a>
- <ul class="blockList">
- <li class="blockList">
- <h4>COEF</h4>
- <pre>public static final int COEF</pre>
- <dl>
- <dt><span class="seeLabel">See Also:</span></dt>
- <dd><a href="../../../constant-values.html#org.opencv.ml.SVM.COEF">Constant Field Values</a></dd>
- </dl>
- </li>
- </ul>
- <a name="CUSTOM">
- <!-- -->
- </a>
- <ul class="blockList">
- <li class="blockList">
- <h4>CUSTOM</h4>
- <pre>public static final int CUSTOM</pre>
- <dl>
- <dt><span class="seeLabel">See Also:</span></dt>
- <dd><a href="../../../constant-values.html#org.opencv.ml.SVM.CUSTOM">Constant Field Values</a></dd>
- </dl>
- </li>
- </ul>
- <a name="DEGREE">
- <!-- -->
- </a>
- <ul class="blockList">
- <li class="blockList">
- <h4>DEGREE</h4>
- <pre>public static final int DEGREE</pre>
- <dl>
- <dt><span class="seeLabel">See Also:</span></dt>
- <dd><a href="../../../constant-values.html#org.opencv.ml.SVM.DEGREE">Constant Field Values</a></dd>
- </dl>
- </li>
- </ul>
- <a name="EPS_SVR">
- <!-- -->
- </a>
- <ul class="blockList">
- <li class="blockList">
- <h4>EPS_SVR</h4>
- <pre>public static final int EPS_SVR</pre>
- <dl>
- <dt><span class="seeLabel">See Also:</span></dt>
- <dd><a href="../../../constant-values.html#org.opencv.ml.SVM.EPS_SVR">Constant Field Values</a></dd>
- </dl>
- </li>
- </ul>
- <a name="GAMMA">
- <!-- -->
- </a>
- <ul class="blockList">
- <li class="blockList">
- <h4>GAMMA</h4>
- <pre>public static final int GAMMA</pre>
- <dl>
- <dt><span class="seeLabel">See Also:</span></dt>
- <dd><a href="../../../constant-values.html#org.opencv.ml.SVM.GAMMA">Constant Field Values</a></dd>
- </dl>
- </li>
- </ul>
- <a name="INTER">
- <!-- -->
- </a>
- <ul class="blockList">
- <li class="blockList">
- <h4>INTER</h4>
- <pre>public static final int INTER</pre>
- <dl>
- <dt><span class="seeLabel">See Also:</span></dt>
- <dd><a href="../../../constant-values.html#org.opencv.ml.SVM.INTER">Constant Field Values</a></dd>
- </dl>
- </li>
- </ul>
- <a name="LINEAR">
- <!-- -->
- </a>
- <ul class="blockList">
- <li class="blockList">
- <h4>LINEAR</h4>
- <pre>public static final int LINEAR</pre>
- <dl>
- <dt><span class="seeLabel">See Also:</span></dt>
- <dd><a href="../../../constant-values.html#org.opencv.ml.SVM.LINEAR">Constant Field Values</a></dd>
- </dl>
- </li>
- </ul>
- <a name="NU">
- <!-- -->
- </a>
- <ul class="blockList">
- <li class="blockList">
- <h4>NU</h4>
- <pre>public static final int NU</pre>
- <dl>
- <dt><span class="seeLabel">See Also:</span></dt>
- <dd><a href="../../../constant-values.html#org.opencv.ml.SVM.NU">Constant Field Values</a></dd>
- </dl>
- </li>
- </ul>
- <a name="NU_SVC">
- <!-- -->
- </a>
- <ul class="blockList">
- <li class="blockList">
- <h4>NU_SVC</h4>
- <pre>public static final int NU_SVC</pre>
- <dl>
- <dt><span class="seeLabel">See Also:</span></dt>
- <dd><a href="../../../constant-values.html#org.opencv.ml.SVM.NU_SVC">Constant Field Values</a></dd>
- </dl>
- </li>
- </ul>
- <a name="NU_SVR">
- <!-- -->
- </a>
- <ul class="blockList">
- <li class="blockList">
- <h4>NU_SVR</h4>
- <pre>public static final int NU_SVR</pre>
- <dl>
- <dt><span class="seeLabel">See Also:</span></dt>
- <dd><a href="../../../constant-values.html#org.opencv.ml.SVM.NU_SVR">Constant Field Values</a></dd>
- </dl>
- </li>
- </ul>
- <a name="ONE_CLASS">
- <!-- -->
- </a>
- <ul class="blockList">
- <li class="blockList">
- <h4>ONE_CLASS</h4>
- <pre>public static final int ONE_CLASS</pre>
- <dl>
- <dt><span class="seeLabel">See Also:</span></dt>
- <dd><a href="../../../constant-values.html#org.opencv.ml.SVM.ONE_CLASS">Constant Field Values</a></dd>
- </dl>
- </li>
- </ul>
- <a name="P">
- <!-- -->
- </a>
- <ul class="blockList">
- <li class="blockList">
- <h4>P</h4>
- <pre>public static final int P</pre>
- <dl>
- <dt><span class="seeLabel">See Also:</span></dt>
- <dd><a href="../../../constant-values.html#org.opencv.ml.SVM.P">Constant Field Values</a></dd>
- </dl>
- </li>
- </ul>
- <a name="POLY">
- <!-- -->
- </a>
- <ul class="blockList">
- <li class="blockList">
- <h4>POLY</h4>
- <pre>public static final int POLY</pre>
- <dl>
- <dt><span class="seeLabel">See Also:</span></dt>
- <dd><a href="../../../constant-values.html#org.opencv.ml.SVM.POLY">Constant Field Values</a></dd>
- </dl>
- </li>
- </ul>
- <a name="RBF">
- <!-- -->
- </a>
- <ul class="blockList">
- <li class="blockList">
- <h4>RBF</h4>
- <pre>public static final int RBF</pre>
- <dl>
- <dt><span class="seeLabel">See Also:</span></dt>
- <dd><a href="../../../constant-values.html#org.opencv.ml.SVM.RBF">Constant Field Values</a></dd>
- </dl>
- </li>
- </ul>
- <a name="SIGMOID">
- <!-- -->
- </a>
- <ul class="blockListLast">
- <li class="blockList">
- <h4>SIGMOID</h4>
- <pre>public static final int SIGMOID</pre>
- <dl>
- <dt><span class="seeLabel">See Also:</span></dt>
- <dd><a href="../../../constant-values.html#org.opencv.ml.SVM.SIGMOID">Constant Field Values</a></dd>
- </dl>
- </li>
- </ul>
- </li>
- </ul>
- <!-- ============ METHOD DETAIL ========== -->
- <ul class="blockList">
- <li class="blockList"><a name="method.detail">
- <!-- -->
- </a>
- <h3>Method Detail</h3>
- <a name="Z:Z__fromPtr__-long-">
- <!-- -->
- </a>
- <ul class="blockList">
- <li class="blockList">
- <h4>__fromPtr__</h4>
- <pre>public static <a href="../../../org/opencv/ml/SVM.html" title="class in org.opencv.ml">SVM</a> __fromPtr__(long addr)</pre>
- </li>
- </ul>
- <a name="create--">
- <!-- -->
- </a>
- <ul class="blockList">
- <li class="blockList">
- <h4>create</h4>
- <pre>public static <a href="../../../org/opencv/ml/SVM.html" title="class in org.opencv.ml">SVM</a> create()</pre>
- <div class="block">Creates empty model.
- Use StatModel::train to train the model. Since %SVM has several parameters, you may want to
- find the best parameters for your problem, it can be done with SVM::trainAuto.</div>
- <dl>
- <dt><span class="returnLabel">Returns:</span></dt>
- <dd>automatically generated</dd>
- </dl>
- </li>
- </ul>
- <a name="getC--">
- <!-- -->
- </a>
- <ul class="blockList">
- <li class="blockList">
- <h4>getC</h4>
- <pre>public double getC()</pre>
- <div class="block">SEE: setC</div>
- <dl>
- <dt><span class="returnLabel">Returns:</span></dt>
- <dd>automatically generated</dd>
- </dl>
- </li>
- </ul>
- <a name="getClassWeights--">
- <!-- -->
- </a>
- <ul class="blockList">
- <li class="blockList">
- <h4>getClassWeights</h4>
- <pre>public <a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a> getClassWeights()</pre>
- <div class="block">SEE: setClassWeights</div>
- <dl>
- <dt><span class="returnLabel">Returns:</span></dt>
- <dd>automatically generated</dd>
- </dl>
- </li>
- </ul>
- <a name="getCoef0--">
- <!-- -->
- </a>
- <ul class="blockList">
- <li class="blockList">
- <h4>getCoef0</h4>
- <pre>public double getCoef0()</pre>
- <div class="block">SEE: setCoef0</div>
- <dl>
- <dt><span class="returnLabel">Returns:</span></dt>
- <dd>automatically generated</dd>
- </dl>
- </li>
- </ul>
- <a name="getDecisionFunction-int-org.opencv.core.Mat-org.opencv.core.Mat-">
- <!-- -->
- </a>
- <ul class="blockList">
- <li class="blockList">
- <h4>getDecisionFunction</h4>
- <pre>public double getDecisionFunction(int i,
- <a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a> alpha,
- <a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a> svidx)</pre>
- <div class="block">Retrieves the decision function</div>
- <dl>
- <dt><span class="paramLabel">Parameters:</span></dt>
- <dd><code>i</code> - the index of the decision function. If the problem solved is regression, 1-class or
- 2-class classification, then there will be just one decision function and the index should
- always be 0. Otherwise, in the case of N-class classification, there will be \(N(N-1)/2\)
- decision functions.</dd>
- <dd><code>alpha</code> - the optional output vector for weights, corresponding to different support vectors.
- In the case of linear %SVM all the alpha's will be 1's.</dd>
- <dd><code>svidx</code> - the optional output vector of indices of support vectors within the matrix of
- support vectors (which can be retrieved by SVM::getSupportVectors). In the case of linear
- %SVM each decision function consists of a single "compressed" support vector.
- The method returns rho parameter of the decision function, a scalar subtracted from the weighted
- sum of kernel responses.</dd>
- <dt><span class="returnLabel">Returns:</span></dt>
- <dd>automatically generated</dd>
- </dl>
- </li>
- </ul>
- <a name="getDefaultGridPtr-int-">
- <!-- -->
- </a>
- <ul class="blockList">
- <li class="blockList">
- <h4>getDefaultGridPtr</h4>
- <pre>public static <a href="../../../org/opencv/ml/ParamGrid.html" title="class in org.opencv.ml">ParamGrid</a> getDefaultGridPtr(int param_id)</pre>
- <div class="block">Generates a grid for %SVM parameters.</div>
- <dl>
- <dt><span class="paramLabel">Parameters:</span></dt>
- <dd><code>param_id</code> - %SVM parameters IDs that must be one of the SVM::ParamTypes. The grid is
- generated for the parameter with this ID.
- The function generates a grid pointer for the specified parameter of the %SVM algorithm.
- The grid may be passed to the function SVM::trainAuto.</dd>
- <dt><span class="returnLabel">Returns:</span></dt>
- <dd>automatically generated</dd>
- </dl>
- </li>
- </ul>
- <a name="getDegree--">
- <!-- -->
- </a>
- <ul class="blockList">
- <li class="blockList">
- <h4>getDegree</h4>
- <pre>public double getDegree()</pre>
- <div class="block">SEE: setDegree</div>
- <dl>
- <dt><span class="returnLabel">Returns:</span></dt>
- <dd>automatically generated</dd>
- </dl>
- </li>
- </ul>
- <a name="getGamma--">
- <!-- -->
- </a>
- <ul class="blockList">
- <li class="blockList">
- <h4>getGamma</h4>
- <pre>public double getGamma()</pre>
- <div class="block">SEE: setGamma</div>
- <dl>
- <dt><span class="returnLabel">Returns:</span></dt>
- <dd>automatically generated</dd>
- </dl>
- </li>
- </ul>
- <a name="getKernelType--">
- <!-- -->
- </a>
- <ul class="blockList">
- <li class="blockList">
- <h4>getKernelType</h4>
- <pre>public int getKernelType()</pre>
- <div class="block">Type of a %SVM kernel.
- See SVM::KernelTypes. Default value is SVM::RBF.</div>
- <dl>
- <dt><span class="returnLabel">Returns:</span></dt>
- <dd>automatically generated</dd>
- </dl>
- </li>
- </ul>
- <a name="getNu--">
- <!-- -->
- </a>
- <ul class="blockList">
- <li class="blockList">
- <h4>getNu</h4>
- <pre>public double getNu()</pre>
- <div class="block">SEE: setNu</div>
- <dl>
- <dt><span class="returnLabel">Returns:</span></dt>
- <dd>automatically generated</dd>
- </dl>
- </li>
- </ul>
- <a name="getP--">
- <!-- -->
- </a>
- <ul class="blockList">
- <li class="blockList">
- <h4>getP</h4>
- <pre>public double getP()</pre>
- <div class="block">SEE: setP</div>
- <dl>
- <dt><span class="returnLabel">Returns:</span></dt>
- <dd>automatically generated</dd>
- </dl>
- </li>
- </ul>
- <a name="getSupportVectors--">
- <!-- -->
- </a>
- <ul class="blockList">
- <li class="blockList">
- <h4>getSupportVectors</h4>
- <pre>public <a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a> getSupportVectors()</pre>
- <div class="block">Retrieves all the support vectors
- The method returns all the support vectors as a floating-point matrix, where support vectors are
- stored as matrix rows.</div>
- <dl>
- <dt><span class="returnLabel">Returns:</span></dt>
- <dd>automatically generated</dd>
- </dl>
- </li>
- </ul>
- <a name="getTermCriteria--">
- <!-- -->
- </a>
- <ul class="blockList">
- <li class="blockList">
- <h4>getTermCriteria</h4>
- <pre>public <a href="../../../org/opencv/core/TermCriteria.html" title="class in org.opencv.core">TermCriteria</a> getTermCriteria()</pre>
- <div class="block">SEE: setTermCriteria</div>
- <dl>
- <dt><span class="returnLabel">Returns:</span></dt>
- <dd>automatically generated</dd>
- </dl>
- </li>
- </ul>
- <a name="getType--">
- <!-- -->
- </a>
- <ul class="blockList">
- <li class="blockList">
- <h4>getType</h4>
- <pre>public int getType()</pre>
- <div class="block">SEE: setType</div>
- <dl>
- <dt><span class="returnLabel">Returns:</span></dt>
- <dd>automatically generated</dd>
- </dl>
- </li>
- </ul>
- <a name="getUncompressedSupportVectors--">
- <!-- -->
- </a>
- <ul class="blockList">
- <li class="blockList">
- <h4>getUncompressedSupportVectors</h4>
- <pre>public <a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a> getUncompressedSupportVectors()</pre>
- <div class="block">Retrieves all the uncompressed support vectors of a linear %SVM
- The method returns all the uncompressed support vectors of a linear %SVM that the compressed
- support vector, used for prediction, was derived from. They are returned in a floating-point
- matrix, where the support vectors are stored as matrix rows.</div>
- <dl>
- <dt><span class="returnLabel">Returns:</span></dt>
- <dd>automatically generated</dd>
- </dl>
- </li>
- </ul>
- <a name="load-java.lang.String-">
- <!-- -->
- </a>
- <ul class="blockList">
- <li class="blockList">
- <h4>load</h4>
- <pre>public static <a href="../../../org/opencv/ml/SVM.html" title="class in org.opencv.ml">SVM</a> load(java.lang.String filepath)</pre>
- <div class="block">Loads and creates a serialized svm from a file
- Use SVM::save to serialize and store an SVM to disk.
- Load the SVM from this file again, by calling this function with the path to the file.</div>
- <dl>
- <dt><span class="paramLabel">Parameters:</span></dt>
- <dd><code>filepath</code> - path to serialized svm</dd>
- <dt><span class="returnLabel">Returns:</span></dt>
- <dd>automatically generated</dd>
- </dl>
- </li>
- </ul>
- <a name="setC-double-">
- <!-- -->
- </a>
- <ul class="blockList">
- <li class="blockList">
- <h4>setC</h4>
- <pre>public void setC(double val)</pre>
- <div class="block">getC SEE: getC</div>
- <dl>
- <dt><span class="paramLabel">Parameters:</span></dt>
- <dd><code>val</code> - automatically generated</dd>
- </dl>
- </li>
- </ul>
- <a name="setClassWeights-org.opencv.core.Mat-">
- <!-- -->
- </a>
- <ul class="blockList">
- <li class="blockList">
- <h4>setClassWeights</h4>
- <pre>public void setClassWeights(<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a> val)</pre>
- <div class="block">getClassWeights SEE: getClassWeights</div>
- <dl>
- <dt><span class="paramLabel">Parameters:</span></dt>
- <dd><code>val</code> - automatically generated</dd>
- </dl>
- </li>
- </ul>
- <a name="setCoef0-double-">
- <!-- -->
- </a>
- <ul class="blockList">
- <li class="blockList">
- <h4>setCoef0</h4>
- <pre>public void setCoef0(double val)</pre>
- <div class="block">getCoef0 SEE: getCoef0</div>
- <dl>
- <dt><span class="paramLabel">Parameters:</span></dt>
- <dd><code>val</code> - automatically generated</dd>
- </dl>
- </li>
- </ul>
- <a name="setDegree-double-">
- <!-- -->
- </a>
- <ul class="blockList">
- <li class="blockList">
- <h4>setDegree</h4>
- <pre>public void setDegree(double val)</pre>
- <div class="block">getDegree SEE: getDegree</div>
- <dl>
- <dt><span class="paramLabel">Parameters:</span></dt>
- <dd><code>val</code> - automatically generated</dd>
- </dl>
- </li>
- </ul>
- <a name="setGamma-double-">
- <!-- -->
- </a>
- <ul class="blockList">
- <li class="blockList">
- <h4>setGamma</h4>
- <pre>public void setGamma(double val)</pre>
- <div class="block">getGamma SEE: getGamma</div>
- <dl>
- <dt><span class="paramLabel">Parameters:</span></dt>
- <dd><code>val</code> - automatically generated</dd>
- </dl>
- </li>
- </ul>
- <a name="setKernel-int-">
- <!-- -->
- </a>
- <ul class="blockList">
- <li class="blockList">
- <h4>setKernel</h4>
- <pre>public void setKernel(int kernelType)</pre>
- <div class="block">Initialize with one of predefined kernels.
- See SVM::KernelTypes.</div>
- <dl>
- <dt><span class="paramLabel">Parameters:</span></dt>
- <dd><code>kernelType</code> - automatically generated</dd>
- </dl>
- </li>
- </ul>
- <a name="setNu-double-">
- <!-- -->
- </a>
- <ul class="blockList">
- <li class="blockList">
- <h4>setNu</h4>
- <pre>public void setNu(double val)</pre>
- <div class="block">getNu SEE: getNu</div>
- <dl>
- <dt><span class="paramLabel">Parameters:</span></dt>
- <dd><code>val</code> - automatically generated</dd>
- </dl>
- </li>
- </ul>
- <a name="setP-double-">
- <!-- -->
- </a>
- <ul class="blockList">
- <li class="blockList">
- <h4>setP</h4>
- <pre>public void setP(double val)</pre>
- <div class="block">getP SEE: getP</div>
- <dl>
- <dt><span class="paramLabel">Parameters:</span></dt>
- <dd><code>val</code> - automatically generated</dd>
- </dl>
- </li>
- </ul>
- <a name="setTermCriteria-org.opencv.core.TermCriteria-">
- <!-- -->
- </a>
- <ul class="blockList">
- <li class="blockList">
- <h4>setTermCriteria</h4>
- <pre>public void setTermCriteria(<a href="../../../org/opencv/core/TermCriteria.html" title="class in org.opencv.core">TermCriteria</a> val)</pre>
- <div class="block">getTermCriteria SEE: getTermCriteria</div>
- <dl>
- <dt><span class="paramLabel">Parameters:</span></dt>
- <dd><code>val</code> - automatically generated</dd>
- </dl>
- </li>
- </ul>
- <a name="setType-int-">
- <!-- -->
- </a>
- <ul class="blockList">
- <li class="blockList">
- <h4>setType</h4>
- <pre>public void setType(int val)</pre>
- <div class="block">getType SEE: getType</div>
- <dl>
- <dt><span class="paramLabel">Parameters:</span></dt>
- <dd><code>val</code> - automatically generated</dd>
- </dl>
- </li>
- </ul>
- <a name="trainAuto-org.opencv.core.Mat-int-org.opencv.core.Mat-">
- <!-- -->
- </a>
- <ul class="blockList">
- <li class="blockList">
- <h4>trainAuto</h4>
- <pre>public boolean trainAuto(<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a> samples,
- int layout,
- <a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a> responses)</pre>
- <div class="block">Trains an %SVM with optimal parameters</div>
- <dl>
- <dt><span class="paramLabel">Parameters:</span></dt>
- <dd><code>samples</code> - training samples</dd>
- <dd><code>layout</code> - See ml::SampleTypes.</dd>
- <dd><code>responses</code> - vector of responses associated with the training samples.
- subset is used to test the model, the others form the train set. So, the %SVM algorithm is
- balanced cross-validation subsets that is proportions between classes in subsets are close
- to such proportion in the whole train dataset.
- The method trains the %SVM model automatically by choosing the optimal parameters C, gamma, p,
- nu, coef0, degree. Parameters are considered optimal when the cross-validation
- estimate of the test set error is minimal.
- This function only makes use of SVM::getDefaultGrid for parameter optimization and thus only
- offers rudimentary parameter options.
- This function works for the classification (SVM::C_SVC or SVM::NU_SVC) as well as for the
- regression (SVM::EPS_SVR or SVM::NU_SVR). If it is SVM::ONE_CLASS, no optimization is made and
- the usual %SVM with parameters specified in params is executed.</dd>
- <dt><span class="returnLabel">Returns:</span></dt>
- <dd>automatically generated</dd>
- </dl>
- </li>
- </ul>
- <a name="trainAuto-org.opencv.core.Mat-int-org.opencv.core.Mat-int-">
- <!-- -->
- </a>
- <ul class="blockList">
- <li class="blockList">
- <h4>trainAuto</h4>
- <pre>public boolean trainAuto(<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a> samples,
- int layout,
- <a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a> responses,
- int kFold)</pre>
- <div class="block">Trains an %SVM with optimal parameters</div>
- <dl>
- <dt><span class="paramLabel">Parameters:</span></dt>
- <dd><code>samples</code> - training samples</dd>
- <dd><code>layout</code> - See ml::SampleTypes.</dd>
- <dd><code>responses</code> - vector of responses associated with the training samples.</dd>
- <dd><code>kFold</code> - Cross-validation parameter. The training set is divided into kFold subsets. One
- subset is used to test the model, the others form the train set. So, the %SVM algorithm is
- balanced cross-validation subsets that is proportions between classes in subsets are close
- to such proportion in the whole train dataset.
- The method trains the %SVM model automatically by choosing the optimal parameters C, gamma, p,
- nu, coef0, degree. Parameters are considered optimal when the cross-validation
- estimate of the test set error is minimal.
- This function only makes use of SVM::getDefaultGrid for parameter optimization and thus only
- offers rudimentary parameter options.
- This function works for the classification (SVM::C_SVC or SVM::NU_SVC) as well as for the
- regression (SVM::EPS_SVR or SVM::NU_SVR). If it is SVM::ONE_CLASS, no optimization is made and
- the usual %SVM with parameters specified in params is executed.</dd>
- <dt><span class="returnLabel">Returns:</span></dt>
- <dd>automatically generated</dd>
- </dl>
- </li>
- </ul>
- <a name="trainAuto-org.opencv.core.Mat-int-org.opencv.core.Mat-int-org.opencv.ml.ParamGrid-">
- <!-- -->
- </a>
- <ul class="blockList">
- <li class="blockList">
- <h4>trainAuto</h4>
- <pre>public boolean trainAuto(<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a> samples,
- int layout,
- <a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a> responses,
- int kFold,
- <a href="../../../org/opencv/ml/ParamGrid.html" title="class in org.opencv.ml">ParamGrid</a> Cgrid)</pre>
- <div class="block">Trains an %SVM with optimal parameters</div>
- <dl>
- <dt><span class="paramLabel">Parameters:</span></dt>
- <dd><code>samples</code> - training samples</dd>
- <dd><code>layout</code> - See ml::SampleTypes.</dd>
- <dd><code>responses</code> - vector of responses associated with the training samples.</dd>
- <dd><code>kFold</code> - Cross-validation parameter. The training set is divided into kFold subsets. One
- subset is used to test the model, the others form the train set. So, the %SVM algorithm is</dd>
- <dd><code>Cgrid</code> - grid for C
- balanced cross-validation subsets that is proportions between classes in subsets are close
- to such proportion in the whole train dataset.
- The method trains the %SVM model automatically by choosing the optimal parameters C, gamma, p,
- nu, coef0, degree. Parameters are considered optimal when the cross-validation
- estimate of the test set error is minimal.
- This function only makes use of SVM::getDefaultGrid for parameter optimization and thus only
- offers rudimentary parameter options.
- This function works for the classification (SVM::C_SVC or SVM::NU_SVC) as well as for the
- regression (SVM::EPS_SVR or SVM::NU_SVR). If it is SVM::ONE_CLASS, no optimization is made and
- the usual %SVM with parameters specified in params is executed.</dd>
- <dt><span class="returnLabel">Returns:</span></dt>
- <dd>automatically generated</dd>
- </dl>
- </li>
- </ul>
- <a name="trainAuto-org.opencv.core.Mat-int-org.opencv.core.Mat-int-org.opencv.ml.ParamGrid-org.opencv.ml.ParamGrid-">
- <!-- -->
- </a>
- <ul class="blockList">
- <li class="blockList">
- <h4>trainAuto</h4>
- <pre>public boolean trainAuto(<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a> samples,
- int layout,
- <a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a> responses,
- int kFold,
- <a href="../../../org/opencv/ml/ParamGrid.html" title="class in org.opencv.ml">ParamGrid</a> Cgrid,
- <a href="../../../org/opencv/ml/ParamGrid.html" title="class in org.opencv.ml">ParamGrid</a> gammaGrid)</pre>
- <div class="block">Trains an %SVM with optimal parameters</div>
- <dl>
- <dt><span class="paramLabel">Parameters:</span></dt>
- <dd><code>samples</code> - training samples</dd>
- <dd><code>layout</code> - See ml::SampleTypes.</dd>
- <dd><code>responses</code> - vector of responses associated with the training samples.</dd>
- <dd><code>kFold</code> - Cross-validation parameter. The training set is divided into kFold subsets. One
- subset is used to test the model, the others form the train set. So, the %SVM algorithm is</dd>
- <dd><code>Cgrid</code> - grid for C</dd>
- <dd><code>gammaGrid</code> - grid for gamma
- balanced cross-validation subsets that is proportions between classes in subsets are close
- to such proportion in the whole train dataset.
- The method trains the %SVM model automatically by choosing the optimal parameters C, gamma, p,
- nu, coef0, degree. Parameters are considered optimal when the cross-validation
- estimate of the test set error is minimal.
- This function only makes use of SVM::getDefaultGrid for parameter optimization and thus only
- offers rudimentary parameter options.
- This function works for the classification (SVM::C_SVC or SVM::NU_SVC) as well as for the
- regression (SVM::EPS_SVR or SVM::NU_SVR). If it is SVM::ONE_CLASS, no optimization is made and
- the usual %SVM with parameters specified in params is executed.</dd>
- <dt><span class="returnLabel">Returns:</span></dt>
- <dd>automatically generated</dd>
- </dl>
- </li>
- </ul>
- <a name="trainAuto-org.opencv.core.Mat-int-org.opencv.core.Mat-int-org.opencv.ml.ParamGrid-org.opencv.ml.ParamGrid-org.opencv.ml.ParamGrid-">
- <!-- -->
- </a>
- <ul class="blockList">
- <li class="blockList">
- <h4>trainAuto</h4>
- <pre>public boolean trainAuto(<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a> samples,
- int layout,
- <a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a> responses,
- int kFold,
- <a href="../../../org/opencv/ml/ParamGrid.html" title="class in org.opencv.ml">ParamGrid</a> Cgrid,
- <a href="../../../org/opencv/ml/ParamGrid.html" title="class in org.opencv.ml">ParamGrid</a> gammaGrid,
- <a href="../../../org/opencv/ml/ParamGrid.html" title="class in org.opencv.ml">ParamGrid</a> pGrid)</pre>
- <div class="block">Trains an %SVM with optimal parameters</div>
- <dl>
- <dt><span class="paramLabel">Parameters:</span></dt>
- <dd><code>samples</code> - training samples</dd>
- <dd><code>layout</code> - See ml::SampleTypes.</dd>
- <dd><code>responses</code> - vector of responses associated with the training samples.</dd>
- <dd><code>kFold</code> - Cross-validation parameter. The training set is divided into kFold subsets. One
- subset is used to test the model, the others form the train set. So, the %SVM algorithm is</dd>
- <dd><code>Cgrid</code> - grid for C</dd>
- <dd><code>gammaGrid</code> - grid for gamma</dd>
- <dd><code>pGrid</code> - grid for p
- balanced cross-validation subsets that is proportions between classes in subsets are close
- to such proportion in the whole train dataset.
- The method trains the %SVM model automatically by choosing the optimal parameters C, gamma, p,
- nu, coef0, degree. Parameters are considered optimal when the cross-validation
- estimate of the test set error is minimal.
- This function only makes use of SVM::getDefaultGrid for parameter optimization and thus only
- offers rudimentary parameter options.
- This function works for the classification (SVM::C_SVC or SVM::NU_SVC) as well as for the
- regression (SVM::EPS_SVR or SVM::NU_SVR). If it is SVM::ONE_CLASS, no optimization is made and
- the usual %SVM with parameters specified in params is executed.</dd>
- <dt><span class="returnLabel">Returns:</span></dt>
- <dd>automatically generated</dd>
- </dl>
- </li>
- </ul>
- <a name="trainAuto-org.opencv.core.Mat-int-org.opencv.core.Mat-int-org.opencv.ml.ParamGrid-org.opencv.ml.ParamGrid-org.opencv.ml.ParamGrid-org.opencv.ml.ParamGrid-">
- <!-- -->
- </a>
- <ul class="blockList">
- <li class="blockList">
- <h4>trainAuto</h4>
- <pre>public boolean trainAuto(<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a> samples,
- int layout,
- <a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a> responses,
- int kFold,
- <a href="../../../org/opencv/ml/ParamGrid.html" title="class in org.opencv.ml">ParamGrid</a> Cgrid,
- <a href="../../../org/opencv/ml/ParamGrid.html" title="class in org.opencv.ml">ParamGrid</a> gammaGrid,
- <a href="../../../org/opencv/ml/ParamGrid.html" title="class in org.opencv.ml">ParamGrid</a> pGrid,
- <a href="../../../org/opencv/ml/ParamGrid.html" title="class in org.opencv.ml">ParamGrid</a> nuGrid)</pre>
- <div class="block">Trains an %SVM with optimal parameters</div>
- <dl>
- <dt><span class="paramLabel">Parameters:</span></dt>
- <dd><code>samples</code> - training samples</dd>
- <dd><code>layout</code> - See ml::SampleTypes.</dd>
- <dd><code>responses</code> - vector of responses associated with the training samples.</dd>
- <dd><code>kFold</code> - Cross-validation parameter. The training set is divided into kFold subsets. One
- subset is used to test the model, the others form the train set. So, the %SVM algorithm is</dd>
- <dd><code>Cgrid</code> - grid for C</dd>
- <dd><code>gammaGrid</code> - grid for gamma</dd>
- <dd><code>pGrid</code> - grid for p</dd>
- <dd><code>nuGrid</code> - grid for nu
- balanced cross-validation subsets that is proportions between classes in subsets are close
- to such proportion in the whole train dataset.
- The method trains the %SVM model automatically by choosing the optimal parameters C, gamma, p,
- nu, coef0, degree. Parameters are considered optimal when the cross-validation
- estimate of the test set error is minimal.
- This function only makes use of SVM::getDefaultGrid for parameter optimization and thus only
- offers rudimentary parameter options.
- This function works for the classification (SVM::C_SVC or SVM::NU_SVC) as well as for the
- regression (SVM::EPS_SVR or SVM::NU_SVR). If it is SVM::ONE_CLASS, no optimization is made and
- the usual %SVM with parameters specified in params is executed.</dd>
- <dt><span class="returnLabel">Returns:</span></dt>
- <dd>automatically generated</dd>
- </dl>
- </li>
- </ul>
- <a name="trainAuto-org.opencv.core.Mat-int-org.opencv.core.Mat-int-org.opencv.ml.ParamGrid-org.opencv.ml.ParamGrid-org.opencv.ml.ParamGrid-org.opencv.ml.ParamGrid-org.opencv.ml.ParamGrid-">
- <!-- -->
- </a>
- <ul class="blockList">
- <li class="blockList">
- <h4>trainAuto</h4>
- <pre>public boolean trainAuto(<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a> samples,
- int layout,
- <a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a> responses,
- int kFold,
- <a href="../../../org/opencv/ml/ParamGrid.html" title="class in org.opencv.ml">ParamGrid</a> Cgrid,
- <a href="../../../org/opencv/ml/ParamGrid.html" title="class in org.opencv.ml">ParamGrid</a> gammaGrid,
- <a href="../../../org/opencv/ml/ParamGrid.html" title="class in org.opencv.ml">ParamGrid</a> pGrid,
- <a href="../../../org/opencv/ml/ParamGrid.html" title="class in org.opencv.ml">ParamGrid</a> nuGrid,
- <a href="../../../org/opencv/ml/ParamGrid.html" title="class in org.opencv.ml">ParamGrid</a> coeffGrid)</pre>
- <div class="block">Trains an %SVM with optimal parameters</div>
- <dl>
- <dt><span class="paramLabel">Parameters:</span></dt>
- <dd><code>samples</code> - training samples</dd>
- <dd><code>layout</code> - See ml::SampleTypes.</dd>
- <dd><code>responses</code> - vector of responses associated with the training samples.</dd>
- <dd><code>kFold</code> - Cross-validation parameter. The training set is divided into kFold subsets. One
- subset is used to test the model, the others form the train set. So, the %SVM algorithm is</dd>
- <dd><code>Cgrid</code> - grid for C</dd>
- <dd><code>gammaGrid</code> - grid for gamma</dd>
- <dd><code>pGrid</code> - grid for p</dd>
- <dd><code>nuGrid</code> - grid for nu</dd>
- <dd><code>coeffGrid</code> - grid for coeff
- balanced cross-validation subsets that is proportions between classes in subsets are close
- to such proportion in the whole train dataset.
- The method trains the %SVM model automatically by choosing the optimal parameters C, gamma, p,
- nu, coef0, degree. Parameters are considered optimal when the cross-validation
- estimate of the test set error is minimal.
- This function only makes use of SVM::getDefaultGrid for parameter optimization and thus only
- offers rudimentary parameter options.
- This function works for the classification (SVM::C_SVC or SVM::NU_SVC) as well as for the
- regression (SVM::EPS_SVR or SVM::NU_SVR). If it is SVM::ONE_CLASS, no optimization is made and
- the usual %SVM with parameters specified in params is executed.</dd>
- <dt><span class="returnLabel">Returns:</span></dt>
- <dd>automatically generated</dd>
- </dl>
- </li>
- </ul>
- <a name="trainAuto-org.opencv.core.Mat-int-org.opencv.core.Mat-int-org.opencv.ml.ParamGrid-org.opencv.ml.ParamGrid-org.opencv.ml.ParamGrid-org.opencv.ml.ParamGrid-org.opencv.ml.ParamGrid-org.opencv.ml.ParamGrid-">
- <!-- -->
- </a>
- <ul class="blockList">
- <li class="blockList">
- <h4>trainAuto</h4>
- <pre>public boolean trainAuto(<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a> samples,
- int layout,
- <a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a> responses,
- int kFold,
- <a href="../../../org/opencv/ml/ParamGrid.html" title="class in org.opencv.ml">ParamGrid</a> Cgrid,
- <a href="../../../org/opencv/ml/ParamGrid.html" title="class in org.opencv.ml">ParamGrid</a> gammaGrid,
- <a href="../../../org/opencv/ml/ParamGrid.html" title="class in org.opencv.ml">ParamGrid</a> pGrid,
- <a href="../../../org/opencv/ml/ParamGrid.html" title="class in org.opencv.ml">ParamGrid</a> nuGrid,
- <a href="../../../org/opencv/ml/ParamGrid.html" title="class in org.opencv.ml">ParamGrid</a> coeffGrid,
- <a href="../../../org/opencv/ml/ParamGrid.html" title="class in org.opencv.ml">ParamGrid</a> degreeGrid)</pre>
- <div class="block">Trains an %SVM with optimal parameters</div>
- <dl>
- <dt><span class="paramLabel">Parameters:</span></dt>
- <dd><code>samples</code> - training samples</dd>
- <dd><code>layout</code> - See ml::SampleTypes.</dd>
- <dd><code>responses</code> - vector of responses associated with the training samples.</dd>
- <dd><code>kFold</code> - Cross-validation parameter. The training set is divided into kFold subsets. One
- subset is used to test the model, the others form the train set. So, the %SVM algorithm is</dd>
- <dd><code>Cgrid</code> - grid for C</dd>
- <dd><code>gammaGrid</code> - grid for gamma</dd>
- <dd><code>pGrid</code> - grid for p</dd>
- <dd><code>nuGrid</code> - grid for nu</dd>
- <dd><code>coeffGrid</code> - grid for coeff</dd>
- <dd><code>degreeGrid</code> - grid for degree
- balanced cross-validation subsets that is proportions between classes in subsets are close
- to such proportion in the whole train dataset.
- The method trains the %SVM model automatically by choosing the optimal parameters C, gamma, p,
- nu, coef0, degree. Parameters are considered optimal when the cross-validation
- estimate of the test set error is minimal.
- This function only makes use of SVM::getDefaultGrid for parameter optimization and thus only
- offers rudimentary parameter options.
- This function works for the classification (SVM::C_SVC or SVM::NU_SVC) as well as for the
- regression (SVM::EPS_SVR or SVM::NU_SVR). If it is SVM::ONE_CLASS, no optimization is made and
- the usual %SVM with parameters specified in params is executed.</dd>
- <dt><span class="returnLabel">Returns:</span></dt>
- <dd>automatically generated</dd>
- </dl>
- </li>
- </ul>
- <a name="trainAuto-org.opencv.core.Mat-int-org.opencv.core.Mat-int-org.opencv.ml.ParamGrid-org.opencv.ml.ParamGrid-org.opencv.ml.ParamGrid-org.opencv.ml.ParamGrid-org.opencv.ml.ParamGrid-org.opencv.ml.ParamGrid-boolean-">
- <!-- -->
- </a>
- <ul class="blockListLast">
- <li class="blockList">
- <h4>trainAuto</h4>
- <pre>public boolean trainAuto(<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a> samples,
- int layout,
- <a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a> responses,
- int kFold,
- <a href="../../../org/opencv/ml/ParamGrid.html" title="class in org.opencv.ml">ParamGrid</a> Cgrid,
- <a href="../../../org/opencv/ml/ParamGrid.html" title="class in org.opencv.ml">ParamGrid</a> gammaGrid,
- <a href="../../../org/opencv/ml/ParamGrid.html" title="class in org.opencv.ml">ParamGrid</a> pGrid,
- <a href="../../../org/opencv/ml/ParamGrid.html" title="class in org.opencv.ml">ParamGrid</a> nuGrid,
- <a href="../../../org/opencv/ml/ParamGrid.html" title="class in org.opencv.ml">ParamGrid</a> coeffGrid,
- <a href="../../../org/opencv/ml/ParamGrid.html" title="class in org.opencv.ml">ParamGrid</a> degreeGrid,
- boolean balanced)</pre>
- <div class="block">Trains an %SVM with optimal parameters</div>
- <dl>
- <dt><span class="paramLabel">Parameters:</span></dt>
- <dd><code>samples</code> - training samples</dd>
- <dd><code>layout</code> - See ml::SampleTypes.</dd>
- <dd><code>responses</code> - vector of responses associated with the training samples.</dd>
- <dd><code>kFold</code> - Cross-validation parameter. The training set is divided into kFold subsets. One
- subset is used to test the model, the others form the train set. So, the %SVM algorithm is</dd>
- <dd><code>Cgrid</code> - grid for C</dd>
- <dd><code>gammaGrid</code> - grid for gamma</dd>
- <dd><code>pGrid</code> - grid for p</dd>
- <dd><code>nuGrid</code> - grid for nu</dd>
- <dd><code>coeffGrid</code> - grid for coeff</dd>
- <dd><code>degreeGrid</code> - grid for degree</dd>
- <dd><code>balanced</code> - If true and the problem is 2-class classification then the method creates more
- balanced cross-validation subsets that is proportions between classes in subsets are close
- to such proportion in the whole train dataset.
- The method trains the %SVM model automatically by choosing the optimal parameters C, gamma, p,
- nu, coef0, degree. Parameters are considered optimal when the cross-validation
- estimate of the test set error is minimal.
- This function only makes use of SVM::getDefaultGrid for parameter optimization and thus only
- offers rudimentary parameter options.
- This function works for the classification (SVM::C_SVC or SVM::NU_SVC) as well as for the
- regression (SVM::EPS_SVR or SVM::NU_SVR). If it is SVM::ONE_CLASS, no optimization is made and
- the usual %SVM with parameters specified in params is executed.</dd>
- <dt><span class="returnLabel">Returns:</span></dt>
- <dd>automatically generated</dd>
- </dl>
- </li>
- </ul>
- </li>
- </ul>
- </li>
- </ul>
- </div>
- </div>
- <!-- ========= END OF CLASS DATA ========= -->
- <!-- ======= START OF BOTTOM NAVBAR ====== -->
- <div class="bottomNav"><a name="navbar.bottom">
- <!-- -->
- </a>
- <div class="skipNav"><a href="#skip.navbar.bottom" title="Skip navigation links">Skip navigation links</a></div>
- <a name="navbar.bottom.firstrow">
- <!-- -->
- </a>
- <ul class="navList" title="Navigation">
- <li><a href="../../../overview-summary.html">Overview</a></li>
- <li><a href="package-summary.html">Package</a></li>
- <li class="navBarCell1Rev">Class</li>
- <li><a href="package-tree.html">Tree</a></li>
- <li><a href="../../../index-all.html">Index</a></li>
- <li><a href="../../../help-doc.html">Help</a></li>
- </ul>
- <div class="aboutLanguage">
- <script>
- var url = window.location.href;
- var pos = url.lastIndexOf('/javadoc/');
- url = pos >= 0 ? (url.substring(0, pos) + '/javadoc/mymath.js') : (window.location.origin + '/mymath.js');
- var script = document.createElement('script');
- script.src = 'https://cdnjs.cloudflare.com/ajax/libs/mathjax/2.7.0/MathJax.js?config=TeX-AMS-MML_HTMLorMML,' + url;
- document.getElementsByTagName('head')[0].appendChild(script);
- </script>
- </div>
- </div>
- <div class="subNav">
- <ul class="navList">
- <li><a href="../../../org/opencv/ml/StatModel.html" title="class in org.opencv.ml"><span class="typeNameLink">Prev Class</span></a></li>
- <li><a href="../../../org/opencv/ml/SVMSGD.html" title="class in org.opencv.ml"><span class="typeNameLink">Next Class</span></a></li>
- </ul>
- <ul class="navList">
- <li><a href="../../../index.html?org/opencv/ml/SVM.html" target="_top">Frames</a></li>
- <li><a href="SVM.html" target="_top">No Frames</a></li>
- </ul>
- <ul class="navList" id="allclasses_navbar_bottom">
- <li><a href="../../../allclasses-noframe.html">All Classes</a></li>
- </ul>
- <div>
- <script type="text/javascript"><!--
- allClassesLink = document.getElementById("allclasses_navbar_bottom");
- if(window==top) {
- allClassesLink.style.display = "block";
- }
- else {
- allClassesLink.style.display = "none";
- }
- //-->
- </script>
- </div>
- <div>
- <ul class="subNavList">
- <li>Summary: </li>
- <li>Nested | </li>
- <li><a href="#field.summary">Field</a> | </li>
- <li>Constr | </li>
- <li><a href="#method.summary">Method</a></li>
- </ul>
- <ul class="subNavList">
- <li>Detail: </li>
- <li><a href="#field.detail">Field</a> | </li>
- <li>Constr | </li>
- <li><a href="#method.detail">Method</a></li>
- </ul>
- </div>
- <a name="skip.navbar.bottom">
- <!-- -->
- </a></div>
- <!-- ======== END OF BOTTOM NAVBAR ======= -->
- <p class="legalCopy"><small>Generated on 2023-06-28 12:47:21 / OpenCV 4.8.0</small></p>
- </body>
- </html>
|