| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503 |
- <!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN" "http://www.w3.org/TR/html4/loose.dtd">
- <!-- NewPage -->
- <html lang="en">
- <head>
- <!-- Generated by javadoc (1.8.0_312) on Wed Jun 28 12:47:24 UTC 2023 -->
- <meta http-equiv="Content-Type" content="text/html; charset=UTF-8">
- <title>EM (OpenCV 4.8.0 Java documentation)</title>
- <meta name="date" content="2023-06-28">
- <link rel="stylesheet" type="text/css" href="../../../stylesheet.css" title="Style">
- <script type="text/javascript" src="../../../script.js"></script>
- </head>
- <body>
- <script type="text/javascript"><!--
- try {
- if (location.href.indexOf('is-external=true') == -1) {
- parent.document.title="EM (OpenCV 4.8.0 Java documentation)";
- }
- }
- catch(err) {
- }
- //-->
- var methods = {"i0":9,"i1":9,"i2":10,"i3":10,"i4":10,"i5":10,"i6":10,"i7":10,"i8":9,"i9":9,"i10":10,"i11":10,"i12":10,"i13":10,"i14":10,"i15":10,"i16":10,"i17":10,"i18":10,"i19":10,"i20":10,"i21":10,"i22":10,"i23":10,"i24":10,"i25":10,"i26":10,"i27":10,"i28":10,"i29":10,"i30":10};
- var tabs = {65535:["t0","All Methods"],1:["t1","Static Methods"],2:["t2","Instance Methods"],8:["t4","Concrete Methods"]};
- var altColor = "altColor";
- var rowColor = "rowColor";
- var tableTab = "tableTab";
- var activeTableTab = "activeTableTab";
- </script>
- <noscript>
- <div>JavaScript is disabled on your browser.</div>
- </noscript>
- <!-- ========= START OF TOP NAVBAR ======= -->
- <div class="topNav"><a name="navbar.top">
- <!-- -->
- </a>
- <div class="skipNav"><a href="#skip.navbar.top" title="Skip navigation links">Skip navigation links</a></div>
- <a name="navbar.top.firstrow">
- <!-- -->
- </a>
- <ul class="navList" title="Navigation">
- <li><a href="../../../overview-summary.html">Overview</a></li>
- <li><a href="package-summary.html">Package</a></li>
- <li class="navBarCell1Rev">Class</li>
- <li><a href="package-tree.html">Tree</a></li>
- <li><a href="../../../index-all.html">Index</a></li>
- <li><a href="../../../help-doc.html">Help</a></li>
- </ul>
- <div class="aboutLanguage">
- <script>
- var url = window.location.href;
- var pos = url.lastIndexOf('/javadoc/');
- url = pos >= 0 ? (url.substring(0, pos) + '/javadoc/mymath.js') : (window.location.origin + '/mymath.js');
- var script = document.createElement('script');
- script.src = 'https://cdnjs.cloudflare.com/ajax/libs/mathjax/2.7.0/MathJax.js?config=TeX-AMS-MML_HTMLorMML,' + url;
- document.getElementsByTagName('head')[0].appendChild(script);
- </script>
- </div>
- </div>
- <div class="subNav">
- <ul class="navList">
- <li><a href="../../../org/opencv/ml/DTrees.html" title="class in org.opencv.ml"><span class="typeNameLink">Prev Class</span></a></li>
- <li><a href="../../../org/opencv/ml/KNearest.html" title="class in org.opencv.ml"><span class="typeNameLink">Next Class</span></a></li>
- </ul>
- <ul class="navList">
- <li><a href="../../../index.html?org/opencv/ml/EM.html" target="_top">Frames</a></li>
- <li><a href="EM.html" target="_top">No Frames</a></li>
- </ul>
- <ul class="navList" id="allclasses_navbar_top">
- <li><a href="../../../allclasses-noframe.html">All Classes</a></li>
- </ul>
- <div>
- <script type="text/javascript"><!--
- allClassesLink = document.getElementById("allclasses_navbar_top");
- if(window==top) {
- allClassesLink.style.display = "block";
- }
- else {
- allClassesLink.style.display = "none";
- }
- //-->
- </script>
- </div>
- <div>
- <ul class="subNavList">
- <li>Summary: </li>
- <li>Nested | </li>
- <li><a href="#field.summary">Field</a> | </li>
- <li>Constr | </li>
- <li><a href="#method.summary">Method</a></li>
- </ul>
- <ul class="subNavList">
- <li>Detail: </li>
- <li><a href="#field.detail">Field</a> | </li>
- <li>Constr | </li>
- <li><a href="#method.detail">Method</a></li>
- </ul>
- </div>
- <a name="skip.navbar.top">
- <!-- -->
- </a></div>
- <!-- ========= END OF TOP NAVBAR ========= -->
- <!-- ======== START OF CLASS DATA ======== -->
- <div class="header">
- <div class="subTitle">org.opencv.ml</div>
- <h2 title="Class EM" class="title">Class EM</h2>
- </div>
- <div class="contentContainer">
- <ul class="inheritance">
- <li>java.lang.Object</li>
- <li>
- <ul class="inheritance">
- <li><a href="../../../org/opencv/core/Algorithm.html" title="class in org.opencv.core">org.opencv.core.Algorithm</a></li>
- <li>
- <ul class="inheritance">
- <li><a href="../../../org/opencv/ml/StatModel.html" title="class in org.opencv.ml">org.opencv.ml.StatModel</a></li>
- <li>
- <ul class="inheritance">
- <li>org.opencv.ml.EM</li>
- </ul>
- </li>
- </ul>
- </li>
- </ul>
- </li>
- </ul>
- <div class="description">
- <ul class="blockList">
- <li class="blockList">
- <hr>
- <br>
- <pre>public class <span class="typeNameLabel">EM</span>
- extends <a href="../../../org/opencv/ml/StatModel.html" title="class in org.opencv.ml">StatModel</a></pre>
- <div class="block">The class implements the Expectation Maximization algorithm.
- SEE: REF: ml_intro_em</div>
- </li>
- </ul>
- </div>
- <div class="summary">
- <ul class="blockList">
- <li class="blockList">
- <!-- =========== FIELD SUMMARY =========== -->
- <ul class="blockList">
- <li class="blockList"><a name="field.summary">
- <!-- -->
- </a>
- <h3>Field Summary</h3>
- <table class="memberSummary" border="0" cellpadding="3" cellspacing="0" summary="Field Summary table, listing fields, and an explanation">
- <caption><span>Fields</span><span class="tabEnd"> </span></caption>
- <tr>
- <th class="colFirst" scope="col">Modifier and Type</th>
- <th class="colLast" scope="col">Field and Description</th>
- </tr>
- <tr class="altColor">
- <td class="colFirst"><code>static int</code></td>
- <td class="colLast"><code><span class="memberNameLink"><a href="../../../org/opencv/ml/EM.html#COV_MAT_DEFAULT">COV_MAT_DEFAULT</a></span></code> </td>
- </tr>
- <tr class="rowColor">
- <td class="colFirst"><code>static int</code></td>
- <td class="colLast"><code><span class="memberNameLink"><a href="../../../org/opencv/ml/EM.html#COV_MAT_DIAGONAL">COV_MAT_DIAGONAL</a></span></code> </td>
- </tr>
- <tr class="altColor">
- <td class="colFirst"><code>static int</code></td>
- <td class="colLast"><code><span class="memberNameLink"><a href="../../../org/opencv/ml/EM.html#COV_MAT_GENERIC">COV_MAT_GENERIC</a></span></code> </td>
- </tr>
- <tr class="rowColor">
- <td class="colFirst"><code>static int</code></td>
- <td class="colLast"><code><span class="memberNameLink"><a href="../../../org/opencv/ml/EM.html#COV_MAT_SPHERICAL">COV_MAT_SPHERICAL</a></span></code> </td>
- </tr>
- <tr class="altColor">
- <td class="colFirst"><code>static int</code></td>
- <td class="colLast"><code><span class="memberNameLink"><a href="../../../org/opencv/ml/EM.html#DEFAULT_MAX_ITERS">DEFAULT_MAX_ITERS</a></span></code> </td>
- </tr>
- <tr class="rowColor">
- <td class="colFirst"><code>static int</code></td>
- <td class="colLast"><code><span class="memberNameLink"><a href="../../../org/opencv/ml/EM.html#DEFAULT_NCLUSTERS">DEFAULT_NCLUSTERS</a></span></code> </td>
- </tr>
- <tr class="altColor">
- <td class="colFirst"><code>static int</code></td>
- <td class="colLast"><code><span class="memberNameLink"><a href="../../../org/opencv/ml/EM.html#START_AUTO_STEP">START_AUTO_STEP</a></span></code> </td>
- </tr>
- <tr class="rowColor">
- <td class="colFirst"><code>static int</code></td>
- <td class="colLast"><code><span class="memberNameLink"><a href="../../../org/opencv/ml/EM.html#START_E_STEP">START_E_STEP</a></span></code> </td>
- </tr>
- <tr class="altColor">
- <td class="colFirst"><code>static int</code></td>
- <td class="colLast"><code><span class="memberNameLink"><a href="../../../org/opencv/ml/EM.html#START_M_STEP">START_M_STEP</a></span></code> </td>
- </tr>
- </table>
- <ul class="blockList">
- <li class="blockList"><a name="fields.inherited.from.class.org.opencv.ml.StatModel">
- <!-- -->
- </a>
- <h3>Fields inherited from class org.opencv.ml.<a href="../../../org/opencv/ml/StatModel.html" title="class in org.opencv.ml">StatModel</a></h3>
- <code><a href="../../../org/opencv/ml/StatModel.html#COMPRESSED_INPUT">COMPRESSED_INPUT</a>, <a href="../../../org/opencv/ml/StatModel.html#PREPROCESSED_INPUT">PREPROCESSED_INPUT</a>, <a href="../../../org/opencv/ml/StatModel.html#RAW_OUTPUT">RAW_OUTPUT</a>, <a href="../../../org/opencv/ml/StatModel.html#UPDATE_MODEL">UPDATE_MODEL</a></code></li>
- </ul>
- </li>
- </ul>
- <!-- ========== METHOD SUMMARY =========== -->
- <ul class="blockList">
- <li class="blockList"><a name="method.summary">
- <!-- -->
- </a>
- <h3>Method Summary</h3>
- <table class="memberSummary" border="0" cellpadding="3" cellspacing="0" summary="Method Summary table, listing methods, and an explanation">
- <caption><span id="t0" class="activeTableTab"><span>All Methods</span><span class="tabEnd"> </span></span><span id="t1" class="tableTab"><span><a href="javascript:show(1);">Static Methods</a></span><span class="tabEnd"> </span></span><span id="t2" class="tableTab"><span><a href="javascript:show(2);">Instance Methods</a></span><span class="tabEnd"> </span></span><span id="t4" class="tableTab"><span><a href="javascript:show(8);">Concrete Methods</a></span><span class="tabEnd"> </span></span></caption>
- <tr>
- <th class="colFirst" scope="col">Modifier and Type</th>
- <th class="colLast" scope="col">Method and Description</th>
- </tr>
- <tr id="i0" class="altColor">
- <td class="colFirst"><code>static <a href="../../../org/opencv/ml/EM.html" title="class in org.opencv.ml">EM</a></code></td>
- <td class="colLast"><code><span class="memberNameLink"><a href="../../../org/opencv/ml/EM.html#Z:Z__fromPtr__-long-">__fromPtr__</a></span>(long addr)</code> </td>
- </tr>
- <tr id="i1" class="rowColor">
- <td class="colFirst"><code>static <a href="../../../org/opencv/ml/EM.html" title="class in org.opencv.ml">EM</a></code></td>
- <td class="colLast"><code><span class="memberNameLink"><a href="../../../org/opencv/ml/EM.html#create--">create</a></span>()</code>
- <div class="block">Creates empty %EM model.</div>
- </td>
- </tr>
- <tr id="i2" class="altColor">
- <td class="colFirst"><code>int</code></td>
- <td class="colLast"><code><span class="memberNameLink"><a href="../../../org/opencv/ml/EM.html#getClustersNumber--">getClustersNumber</a></span>()</code>
- <div class="block">SEE: setClustersNumber</div>
- </td>
- </tr>
- <tr id="i3" class="rowColor">
- <td class="colFirst"><code>int</code></td>
- <td class="colLast"><code><span class="memberNameLink"><a href="../../../org/opencv/ml/EM.html#getCovarianceMatrixType--">getCovarianceMatrixType</a></span>()</code>
- <div class="block">SEE: setCovarianceMatrixType</div>
- </td>
- </tr>
- <tr id="i4" class="altColor">
- <td class="colFirst"><code>void</code></td>
- <td class="colLast"><code><span class="memberNameLink"><a href="../../../org/opencv/ml/EM.html#getCovs-java.util.List-">getCovs</a></span>(java.util.List<<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>> covs)</code>
- <div class="block">Returns covariation matrices
- Returns vector of covariation matrices.</div>
- </td>
- </tr>
- <tr id="i5" class="rowColor">
- <td class="colFirst"><code><a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a></code></td>
- <td class="colLast"><code><span class="memberNameLink"><a href="../../../org/opencv/ml/EM.html#getMeans--">getMeans</a></span>()</code>
- <div class="block">Returns the cluster centers (means of the Gaussian mixture)
- Returns matrix with the number of rows equal to the number of mixtures and number of columns
- equal to the space dimensionality.</div>
- </td>
- </tr>
- <tr id="i6" class="altColor">
- <td class="colFirst"><code><a href="../../../org/opencv/core/TermCriteria.html" title="class in org.opencv.core">TermCriteria</a></code></td>
- <td class="colLast"><code><span class="memberNameLink"><a href="../../../org/opencv/ml/EM.html#getTermCriteria--">getTermCriteria</a></span>()</code>
- <div class="block">SEE: setTermCriteria</div>
- </td>
- </tr>
- <tr id="i7" class="rowColor">
- <td class="colFirst"><code><a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a></code></td>
- <td class="colLast"><code><span class="memberNameLink"><a href="../../../org/opencv/ml/EM.html#getWeights--">getWeights</a></span>()</code>
- <div class="block">Returns weights of the mixtures
- Returns vector with the number of elements equal to the number of mixtures.</div>
- </td>
- </tr>
- <tr id="i8" class="altColor">
- <td class="colFirst"><code>static <a href="../../../org/opencv/ml/EM.html" title="class in org.opencv.ml">EM</a></code></td>
- <td class="colLast"><code><span class="memberNameLink"><a href="../../../org/opencv/ml/EM.html#load-java.lang.String-">load</a></span>(java.lang.String filepath)</code>
- <div class="block">Loads and creates a serialized EM from a file
- Use EM::save to serialize and store an EM to disk.</div>
- </td>
- </tr>
- <tr id="i9" class="rowColor">
- <td class="colFirst"><code>static <a href="../../../org/opencv/ml/EM.html" title="class in org.opencv.ml">EM</a></code></td>
- <td class="colLast"><code><span class="memberNameLink"><a href="../../../org/opencv/ml/EM.html#load-java.lang.String-java.lang.String-">load</a></span>(java.lang.String filepath,
- java.lang.String nodeName)</code>
- <div class="block">Loads and creates a serialized EM from a file
- Use EM::save to serialize and store an EM to disk.</div>
- </td>
- </tr>
- <tr id="i10" class="altColor">
- <td class="colFirst"><code>float</code></td>
- <td class="colLast"><code><span class="memberNameLink"><a href="../../../org/opencv/ml/EM.html#predict-org.opencv.core.Mat-">predict</a></span>(<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a> samples)</code>
- <div class="block">Returns posterior probabilities for the provided samples</div>
- </td>
- </tr>
- <tr id="i11" class="rowColor">
- <td class="colFirst"><code>float</code></td>
- <td class="colLast"><code><span class="memberNameLink"><a href="../../../org/opencv/ml/EM.html#predict-org.opencv.core.Mat-org.opencv.core.Mat-">predict</a></span>(<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a> samples,
- <a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a> results)</code>
- <div class="block">Returns posterior probabilities for the provided samples</div>
- </td>
- </tr>
- <tr id="i12" class="altColor">
- <td class="colFirst"><code>float</code></td>
- <td class="colLast"><code><span class="memberNameLink"><a href="../../../org/opencv/ml/EM.html#predict-org.opencv.core.Mat-org.opencv.core.Mat-int-">predict</a></span>(<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a> samples,
- <a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a> results,
- int flags)</code>
- <div class="block">Returns posterior probabilities for the provided samples</div>
- </td>
- </tr>
- <tr id="i13" class="rowColor">
- <td class="colFirst"><code>double[]</code></td>
- <td class="colLast"><code><span class="memberNameLink"><a href="../../../org/opencv/ml/EM.html#predict2-org.opencv.core.Mat-org.opencv.core.Mat-">predict2</a></span>(<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a> sample,
- <a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a> probs)</code>
- <div class="block">Returns a likelihood logarithm value and an index of the most probable mixture component
- for the given sample.</div>
- </td>
- </tr>
- <tr id="i14" class="altColor">
- <td class="colFirst"><code>void</code></td>
- <td class="colLast"><code><span class="memberNameLink"><a href="../../../org/opencv/ml/EM.html#setClustersNumber-int-">setClustersNumber</a></span>(int val)</code>
- <div class="block">getClustersNumber SEE: getClustersNumber</div>
- </td>
- </tr>
- <tr id="i15" class="rowColor">
- <td class="colFirst"><code>void</code></td>
- <td class="colLast"><code><span class="memberNameLink"><a href="../../../org/opencv/ml/EM.html#setCovarianceMatrixType-int-">setCovarianceMatrixType</a></span>(int val)</code>
- <div class="block">getCovarianceMatrixType SEE: getCovarianceMatrixType</div>
- </td>
- </tr>
- <tr id="i16" class="altColor">
- <td class="colFirst"><code>void</code></td>
- <td class="colLast"><code><span class="memberNameLink"><a href="../../../org/opencv/ml/EM.html#setTermCriteria-org.opencv.core.TermCriteria-">setTermCriteria</a></span>(<a href="../../../org/opencv/core/TermCriteria.html" title="class in org.opencv.core">TermCriteria</a> val)</code>
- <div class="block">getTermCriteria SEE: getTermCriteria</div>
- </td>
- </tr>
- <tr id="i17" class="rowColor">
- <td class="colFirst"><code>boolean</code></td>
- <td class="colLast"><code><span class="memberNameLink"><a href="../../../org/opencv/ml/EM.html#trainE-org.opencv.core.Mat-org.opencv.core.Mat-">trainE</a></span>(<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a> samples,
- <a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a> means0)</code>
- <div class="block">Estimate the Gaussian mixture parameters from a samples set.</div>
- </td>
- </tr>
- <tr id="i18" class="altColor">
- <td class="colFirst"><code>boolean</code></td>
- <td class="colLast"><code><span class="memberNameLink"><a href="../../../org/opencv/ml/EM.html#trainE-org.opencv.core.Mat-org.opencv.core.Mat-org.opencv.core.Mat-">trainE</a></span>(<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a> samples,
- <a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a> means0,
- <a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a> covs0)</code>
- <div class="block">Estimate the Gaussian mixture parameters from a samples set.</div>
- </td>
- </tr>
- <tr id="i19" class="rowColor">
- <td class="colFirst"><code>boolean</code></td>
- <td class="colLast"><code><span class="memberNameLink"><a href="../../../org/opencv/ml/EM.html#trainE-org.opencv.core.Mat-org.opencv.core.Mat-org.opencv.core.Mat-org.opencv.core.Mat-">trainE</a></span>(<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a> samples,
- <a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a> means0,
- <a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a> covs0,
- <a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a> weights0)</code>
- <div class="block">Estimate the Gaussian mixture parameters from a samples set.</div>
- </td>
- </tr>
- <tr id="i20" class="altColor">
- <td class="colFirst"><code>boolean</code></td>
- <td class="colLast"><code><span class="memberNameLink"><a href="../../../org/opencv/ml/EM.html#trainE-org.opencv.core.Mat-org.opencv.core.Mat-org.opencv.core.Mat-org.opencv.core.Mat-org.opencv.core.Mat-">trainE</a></span>(<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a> samples,
- <a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a> means0,
- <a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a> covs0,
- <a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a> weights0,
- <a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a> logLikelihoods)</code>
- <div class="block">Estimate the Gaussian mixture parameters from a samples set.</div>
- </td>
- </tr>
- <tr id="i21" class="rowColor">
- <td class="colFirst"><code>boolean</code></td>
- <td class="colLast"><code><span class="memberNameLink"><a href="../../../org/opencv/ml/EM.html#trainE-org.opencv.core.Mat-org.opencv.core.Mat-org.opencv.core.Mat-org.opencv.core.Mat-org.opencv.core.Mat-org.opencv.core.Mat-">trainE</a></span>(<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a> samples,
- <a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a> means0,
- <a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a> covs0,
- <a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a> weights0,
- <a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a> logLikelihoods,
- <a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a> labels)</code>
- <div class="block">Estimate the Gaussian mixture parameters from a samples set.</div>
- </td>
- </tr>
- <tr id="i22" class="altColor">
- <td class="colFirst"><code>boolean</code></td>
- <td class="colLast"><code><span class="memberNameLink"><a href="../../../org/opencv/ml/EM.html#trainE-org.opencv.core.Mat-org.opencv.core.Mat-org.opencv.core.Mat-org.opencv.core.Mat-org.opencv.core.Mat-org.opencv.core.Mat-org.opencv.core.Mat-">trainE</a></span>(<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a> samples,
- <a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a> means0,
- <a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a> covs0,
- <a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a> weights0,
- <a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a> logLikelihoods,
- <a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a> labels,
- <a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a> probs)</code>
- <div class="block">Estimate the Gaussian mixture parameters from a samples set.</div>
- </td>
- </tr>
- <tr id="i23" class="rowColor">
- <td class="colFirst"><code>boolean</code></td>
- <td class="colLast"><code><span class="memberNameLink"><a href="../../../org/opencv/ml/EM.html#trainEM-org.opencv.core.Mat-">trainEM</a></span>(<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a> samples)</code>
- <div class="block">Estimate the Gaussian mixture parameters from a samples set.</div>
- </td>
- </tr>
- <tr id="i24" class="altColor">
- <td class="colFirst"><code>boolean</code></td>
- <td class="colLast"><code><span class="memberNameLink"><a href="../../../org/opencv/ml/EM.html#trainEM-org.opencv.core.Mat-org.opencv.core.Mat-">trainEM</a></span>(<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a> samples,
- <a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a> logLikelihoods)</code>
- <div class="block">Estimate the Gaussian mixture parameters from a samples set.</div>
- </td>
- </tr>
- <tr id="i25" class="rowColor">
- <td class="colFirst"><code>boolean</code></td>
- <td class="colLast"><code><span class="memberNameLink"><a href="../../../org/opencv/ml/EM.html#trainEM-org.opencv.core.Mat-org.opencv.core.Mat-org.opencv.core.Mat-">trainEM</a></span>(<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a> samples,
- <a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a> logLikelihoods,
- <a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a> labels)</code>
- <div class="block">Estimate the Gaussian mixture parameters from a samples set.</div>
- </td>
- </tr>
- <tr id="i26" class="altColor">
- <td class="colFirst"><code>boolean</code></td>
- <td class="colLast"><code><span class="memberNameLink"><a href="../../../org/opencv/ml/EM.html#trainEM-org.opencv.core.Mat-org.opencv.core.Mat-org.opencv.core.Mat-org.opencv.core.Mat-">trainEM</a></span>(<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a> samples,
- <a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a> logLikelihoods,
- <a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a> labels,
- <a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a> probs)</code>
- <div class="block">Estimate the Gaussian mixture parameters from a samples set.</div>
- </td>
- </tr>
- <tr id="i27" class="rowColor">
- <td class="colFirst"><code>boolean</code></td>
- <td class="colLast"><code><span class="memberNameLink"><a href="../../../org/opencv/ml/EM.html#trainM-org.opencv.core.Mat-org.opencv.core.Mat-">trainM</a></span>(<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a> samples,
- <a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a> probs0)</code>
- <div class="block">Estimate the Gaussian mixture parameters from a samples set.</div>
- </td>
- </tr>
- <tr id="i28" class="altColor">
- <td class="colFirst"><code>boolean</code></td>
- <td class="colLast"><code><span class="memberNameLink"><a href="../../../org/opencv/ml/EM.html#trainM-org.opencv.core.Mat-org.opencv.core.Mat-org.opencv.core.Mat-">trainM</a></span>(<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a> samples,
- <a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a> probs0,
- <a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a> logLikelihoods)</code>
- <div class="block">Estimate the Gaussian mixture parameters from a samples set.</div>
- </td>
- </tr>
- <tr id="i29" class="rowColor">
- <td class="colFirst"><code>boolean</code></td>
- <td class="colLast"><code><span class="memberNameLink"><a href="../../../org/opencv/ml/EM.html#trainM-org.opencv.core.Mat-org.opencv.core.Mat-org.opencv.core.Mat-org.opencv.core.Mat-">trainM</a></span>(<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a> samples,
- <a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a> probs0,
- <a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a> logLikelihoods,
- <a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a> labels)</code>
- <div class="block">Estimate the Gaussian mixture parameters from a samples set.</div>
- </td>
- </tr>
- <tr id="i30" class="altColor">
- <td class="colFirst"><code>boolean</code></td>
- <td class="colLast"><code><span class="memberNameLink"><a href="../../../org/opencv/ml/EM.html#trainM-org.opencv.core.Mat-org.opencv.core.Mat-org.opencv.core.Mat-org.opencv.core.Mat-org.opencv.core.Mat-">trainM</a></span>(<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a> samples,
- <a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a> probs0,
- <a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a> logLikelihoods,
- <a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a> labels,
- <a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a> probs)</code>
- <div class="block">Estimate the Gaussian mixture parameters from a samples set.</div>
- </td>
- </tr>
- </table>
- <ul class="blockList">
- <li class="blockList"><a name="methods.inherited.from.class.org.opencv.ml.StatModel">
- <!-- -->
- </a>
- <h3>Methods inherited from class org.opencv.ml.<a href="../../../org/opencv/ml/StatModel.html" title="class in org.opencv.ml">StatModel</a></h3>
- <code><a href="../../../org/opencv/ml/StatModel.html#calcError-org.opencv.ml.TrainData-boolean-org.opencv.core.Mat-">calcError</a>, <a href="../../../org/opencv/ml/StatModel.html#empty--">empty</a>, <a href="../../../org/opencv/ml/StatModel.html#getVarCount--">getVarCount</a>, <a href="../../../org/opencv/ml/StatModel.html#isClassifier--">isClassifier</a>, <a href="../../../org/opencv/ml/StatModel.html#isTrained--">isTrained</a>, <a href="../../../org/opencv/ml/StatModel.html#train-org.opencv.core.Mat-int-org.opencv.core.Mat-">train</a>, <a href="../../../org/opencv/ml/StatModel.html#train-org.opencv.ml.TrainData-">train</a>, <a href="../../../org/opencv/ml/StatModel.html#train-org.opencv.ml.TrainData-int-">train</a></code></li>
- </ul>
- <ul class="blockList">
- <li class="blockList"><a name="methods.inherited.from.class.org.opencv.core.Algorithm">
- <!-- -->
- </a>
- <h3>Methods inherited from class org.opencv.core.<a href="../../../org/opencv/core/Algorithm.html" title="class in org.opencv.core">Algorithm</a></h3>
- <code><a href="../../../org/opencv/core/Algorithm.html#clear--">clear</a>, <a href="../../../org/opencv/core/Algorithm.html#getDefaultName--">getDefaultName</a>, <a href="../../../org/opencv/core/Algorithm.html#getNativeObjAddr--">getNativeObjAddr</a>, <a href="../../../org/opencv/core/Algorithm.html#save-java.lang.String-">save</a></code></li>
- </ul>
- <ul class="blockList">
- <li class="blockList"><a name="methods.inherited.from.class.java.lang.Object">
- <!-- -->
- </a>
- <h3>Methods inherited from class java.lang.Object</h3>
- <code>equals, getClass, hashCode, notify, notifyAll, toString, wait, wait, wait</code></li>
- </ul>
- </li>
- </ul>
- </li>
- </ul>
- </div>
- <div class="details">
- <ul class="blockList">
- <li class="blockList">
- <!-- ============ FIELD DETAIL =========== -->
- <ul class="blockList">
- <li class="blockList"><a name="field.detail">
- <!-- -->
- </a>
- <h3>Field Detail</h3>
- <a name="COV_MAT_DEFAULT">
- <!-- -->
- </a>
- <ul class="blockList">
- <li class="blockList">
- <h4>COV_MAT_DEFAULT</h4>
- <pre>public static final int COV_MAT_DEFAULT</pre>
- <dl>
- <dt><span class="seeLabel">See Also:</span></dt>
- <dd><a href="../../../constant-values.html#org.opencv.ml.EM.COV_MAT_DEFAULT">Constant Field Values</a></dd>
- </dl>
- </li>
- </ul>
- <a name="COV_MAT_DIAGONAL">
- <!-- -->
- </a>
- <ul class="blockList">
- <li class="blockList">
- <h4>COV_MAT_DIAGONAL</h4>
- <pre>public static final int COV_MAT_DIAGONAL</pre>
- <dl>
- <dt><span class="seeLabel">See Also:</span></dt>
- <dd><a href="../../../constant-values.html#org.opencv.ml.EM.COV_MAT_DIAGONAL">Constant Field Values</a></dd>
- </dl>
- </li>
- </ul>
- <a name="COV_MAT_GENERIC">
- <!-- -->
- </a>
- <ul class="blockList">
- <li class="blockList">
- <h4>COV_MAT_GENERIC</h4>
- <pre>public static final int COV_MAT_GENERIC</pre>
- <dl>
- <dt><span class="seeLabel">See Also:</span></dt>
- <dd><a href="../../../constant-values.html#org.opencv.ml.EM.COV_MAT_GENERIC">Constant Field Values</a></dd>
- </dl>
- </li>
- </ul>
- <a name="COV_MAT_SPHERICAL">
- <!-- -->
- </a>
- <ul class="blockList">
- <li class="blockList">
- <h4>COV_MAT_SPHERICAL</h4>
- <pre>public static final int COV_MAT_SPHERICAL</pre>
- <dl>
- <dt><span class="seeLabel">See Also:</span></dt>
- <dd><a href="../../../constant-values.html#org.opencv.ml.EM.COV_MAT_SPHERICAL">Constant Field Values</a></dd>
- </dl>
- </li>
- </ul>
- <a name="DEFAULT_MAX_ITERS">
- <!-- -->
- </a>
- <ul class="blockList">
- <li class="blockList">
- <h4>DEFAULT_MAX_ITERS</h4>
- <pre>public static final int DEFAULT_MAX_ITERS</pre>
- <dl>
- <dt><span class="seeLabel">See Also:</span></dt>
- <dd><a href="../../../constant-values.html#org.opencv.ml.EM.DEFAULT_MAX_ITERS">Constant Field Values</a></dd>
- </dl>
- </li>
- </ul>
- <a name="DEFAULT_NCLUSTERS">
- <!-- -->
- </a>
- <ul class="blockList">
- <li class="blockList">
- <h4>DEFAULT_NCLUSTERS</h4>
- <pre>public static final int DEFAULT_NCLUSTERS</pre>
- <dl>
- <dt><span class="seeLabel">See Also:</span></dt>
- <dd><a href="../../../constant-values.html#org.opencv.ml.EM.DEFAULT_NCLUSTERS">Constant Field Values</a></dd>
- </dl>
- </li>
- </ul>
- <a name="START_AUTO_STEP">
- <!-- -->
- </a>
- <ul class="blockList">
- <li class="blockList">
- <h4>START_AUTO_STEP</h4>
- <pre>public static final int START_AUTO_STEP</pre>
- <dl>
- <dt><span class="seeLabel">See Also:</span></dt>
- <dd><a href="../../../constant-values.html#org.opencv.ml.EM.START_AUTO_STEP">Constant Field Values</a></dd>
- </dl>
- </li>
- </ul>
- <a name="START_E_STEP">
- <!-- -->
- </a>
- <ul class="blockList">
- <li class="blockList">
- <h4>START_E_STEP</h4>
- <pre>public static final int START_E_STEP</pre>
- <dl>
- <dt><span class="seeLabel">See Also:</span></dt>
- <dd><a href="../../../constant-values.html#org.opencv.ml.EM.START_E_STEP">Constant Field Values</a></dd>
- </dl>
- </li>
- </ul>
- <a name="START_M_STEP">
- <!-- -->
- </a>
- <ul class="blockListLast">
- <li class="blockList">
- <h4>START_M_STEP</h4>
- <pre>public static final int START_M_STEP</pre>
- <dl>
- <dt><span class="seeLabel">See Also:</span></dt>
- <dd><a href="../../../constant-values.html#org.opencv.ml.EM.START_M_STEP">Constant Field Values</a></dd>
- </dl>
- </li>
- </ul>
- </li>
- </ul>
- <!-- ============ METHOD DETAIL ========== -->
- <ul class="blockList">
- <li class="blockList"><a name="method.detail">
- <!-- -->
- </a>
- <h3>Method Detail</h3>
- <a name="Z:Z__fromPtr__-long-">
- <!-- -->
- </a>
- <ul class="blockList">
- <li class="blockList">
- <h4>__fromPtr__</h4>
- <pre>public static <a href="../../../org/opencv/ml/EM.html" title="class in org.opencv.ml">EM</a> __fromPtr__(long addr)</pre>
- </li>
- </ul>
- <a name="create--">
- <!-- -->
- </a>
- <ul class="blockList">
- <li class="blockList">
- <h4>create</h4>
- <pre>public static <a href="../../../org/opencv/ml/EM.html" title="class in org.opencv.ml">EM</a> create()</pre>
- <div class="block">Creates empty %EM model.
- The model should be trained then using StatModel::train(traindata, flags) method. Alternatively, you
- can use one of the EM::train\* methods or load it from file using Algorithm::load<EM>(filename).</div>
- <dl>
- <dt><span class="returnLabel">Returns:</span></dt>
- <dd>automatically generated</dd>
- </dl>
- </li>
- </ul>
- <a name="getClustersNumber--">
- <!-- -->
- </a>
- <ul class="blockList">
- <li class="blockList">
- <h4>getClustersNumber</h4>
- <pre>public int getClustersNumber()</pre>
- <div class="block">SEE: setClustersNumber</div>
- <dl>
- <dt><span class="returnLabel">Returns:</span></dt>
- <dd>automatically generated</dd>
- </dl>
- </li>
- </ul>
- <a name="getCovarianceMatrixType--">
- <!-- -->
- </a>
- <ul class="blockList">
- <li class="blockList">
- <h4>getCovarianceMatrixType</h4>
- <pre>public int getCovarianceMatrixType()</pre>
- <div class="block">SEE: setCovarianceMatrixType</div>
- <dl>
- <dt><span class="returnLabel">Returns:</span></dt>
- <dd>automatically generated</dd>
- </dl>
- </li>
- </ul>
- <a name="getCovs-java.util.List-">
- <!-- -->
- </a>
- <ul class="blockList">
- <li class="blockList">
- <h4>getCovs</h4>
- <pre>public void getCovs(java.util.List<<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>> covs)</pre>
- <div class="block">Returns covariation matrices
- Returns vector of covariation matrices. Number of matrices is the number of gaussian mixtures,
- each matrix is a square floating-point matrix NxN, where N is the space dimensionality.</div>
- <dl>
- <dt><span class="paramLabel">Parameters:</span></dt>
- <dd><code>covs</code> - automatically generated</dd>
- </dl>
- </li>
- </ul>
- <a name="getMeans--">
- <!-- -->
- </a>
- <ul class="blockList">
- <li class="blockList">
- <h4>getMeans</h4>
- <pre>public <a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a> getMeans()</pre>
- <div class="block">Returns the cluster centers (means of the Gaussian mixture)
- Returns matrix with the number of rows equal to the number of mixtures and number of columns
- equal to the space dimensionality.</div>
- <dl>
- <dt><span class="returnLabel">Returns:</span></dt>
- <dd>automatically generated</dd>
- </dl>
- </li>
- </ul>
- <a name="getTermCriteria--">
- <!-- -->
- </a>
- <ul class="blockList">
- <li class="blockList">
- <h4>getTermCriteria</h4>
- <pre>public <a href="../../../org/opencv/core/TermCriteria.html" title="class in org.opencv.core">TermCriteria</a> getTermCriteria()</pre>
- <div class="block">SEE: setTermCriteria</div>
- <dl>
- <dt><span class="returnLabel">Returns:</span></dt>
- <dd>automatically generated</dd>
- </dl>
- </li>
- </ul>
- <a name="getWeights--">
- <!-- -->
- </a>
- <ul class="blockList">
- <li class="blockList">
- <h4>getWeights</h4>
- <pre>public <a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a> getWeights()</pre>
- <div class="block">Returns weights of the mixtures
- Returns vector with the number of elements equal to the number of mixtures.</div>
- <dl>
- <dt><span class="returnLabel">Returns:</span></dt>
- <dd>automatically generated</dd>
- </dl>
- </li>
- </ul>
- <a name="load-java.lang.String-">
- <!-- -->
- </a>
- <ul class="blockList">
- <li class="blockList">
- <h4>load</h4>
- <pre>public static <a href="../../../org/opencv/ml/EM.html" title="class in org.opencv.ml">EM</a> load(java.lang.String filepath)</pre>
- <div class="block">Loads and creates a serialized EM from a file
- Use EM::save to serialize and store an EM to disk.
- Load the EM from this file again, by calling this function with the path to the file.
- Optionally specify the node for the file containing the classifier</div>
- <dl>
- <dt><span class="paramLabel">Parameters:</span></dt>
- <dd><code>filepath</code> - path to serialized EM</dd>
- <dt><span class="returnLabel">Returns:</span></dt>
- <dd>automatically generated</dd>
- </dl>
- </li>
- </ul>
- <a name="load-java.lang.String-java.lang.String-">
- <!-- -->
- </a>
- <ul class="blockList">
- <li class="blockList">
- <h4>load</h4>
- <pre>public static <a href="../../../org/opencv/ml/EM.html" title="class in org.opencv.ml">EM</a> load(java.lang.String filepath,
- java.lang.String nodeName)</pre>
- <div class="block">Loads and creates a serialized EM from a file
- Use EM::save to serialize and store an EM to disk.
- Load the EM from this file again, by calling this function with the path to the file.
- Optionally specify the node for the file containing the classifier</div>
- <dl>
- <dt><span class="paramLabel">Parameters:</span></dt>
- <dd><code>filepath</code> - path to serialized EM</dd>
- <dd><code>nodeName</code> - name of node containing the classifier</dd>
- <dt><span class="returnLabel">Returns:</span></dt>
- <dd>automatically generated</dd>
- </dl>
- </li>
- </ul>
- <a name="predict-org.opencv.core.Mat-">
- <!-- -->
- </a>
- <ul class="blockList">
- <li class="blockList">
- <h4>predict</h4>
- <pre>public float predict(<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a> samples)</pre>
- <div class="block">Returns posterior probabilities for the provided samples</div>
- <dl>
- <dt><span class="overrideSpecifyLabel">Overrides:</span></dt>
- <dd><code><a href="../../../org/opencv/ml/StatModel.html#predict-org.opencv.core.Mat-">predict</a></code> in class <code><a href="../../../org/opencv/ml/StatModel.html" title="class in org.opencv.ml">StatModel</a></code></dd>
- <dt><span class="paramLabel">Parameters:</span></dt>
- <dd><code>samples</code> - The input samples, floating-point matrix
- posterior probabilities for each sample from the input</dd>
- <dt><span class="returnLabel">Returns:</span></dt>
- <dd>automatically generated</dd>
- </dl>
- </li>
- </ul>
- <a name="predict-org.opencv.core.Mat-org.opencv.core.Mat-">
- <!-- -->
- </a>
- <ul class="blockList">
- <li class="blockList">
- <h4>predict</h4>
- <pre>public float predict(<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a> samples,
- <a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a> results)</pre>
- <div class="block">Returns posterior probabilities for the provided samples</div>
- <dl>
- <dt><span class="overrideSpecifyLabel">Overrides:</span></dt>
- <dd><code><a href="../../../org/opencv/ml/StatModel.html#predict-org.opencv.core.Mat-org.opencv.core.Mat-">predict</a></code> in class <code><a href="../../../org/opencv/ml/StatModel.html" title="class in org.opencv.ml">StatModel</a></code></dd>
- <dt><span class="paramLabel">Parameters:</span></dt>
- <dd><code>samples</code> - The input samples, floating-point matrix</dd>
- <dd><code>results</code> - The optional output \( nSamples \times nClusters\) matrix of results. It contains
- posterior probabilities for each sample from the input</dd>
- <dt><span class="returnLabel">Returns:</span></dt>
- <dd>automatically generated</dd>
- </dl>
- </li>
- </ul>
- <a name="predict-org.opencv.core.Mat-org.opencv.core.Mat-int-">
- <!-- -->
- </a>
- <ul class="blockList">
- <li class="blockList">
- <h4>predict</h4>
- <pre>public float predict(<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a> samples,
- <a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a> results,
- int flags)</pre>
- <div class="block">Returns posterior probabilities for the provided samples</div>
- <dl>
- <dt><span class="overrideSpecifyLabel">Overrides:</span></dt>
- <dd><code><a href="../../../org/opencv/ml/StatModel.html#predict-org.opencv.core.Mat-org.opencv.core.Mat-int-">predict</a></code> in class <code><a href="../../../org/opencv/ml/StatModel.html" title="class in org.opencv.ml">StatModel</a></code></dd>
- <dt><span class="paramLabel">Parameters:</span></dt>
- <dd><code>samples</code> - The input samples, floating-point matrix</dd>
- <dd><code>results</code> - The optional output \( nSamples \times nClusters\) matrix of results. It contains
- posterior probabilities for each sample from the input</dd>
- <dd><code>flags</code> - This parameter will be ignored</dd>
- <dt><span class="returnLabel">Returns:</span></dt>
- <dd>automatically generated</dd>
- </dl>
- </li>
- </ul>
- <a name="predict2-org.opencv.core.Mat-org.opencv.core.Mat-">
- <!-- -->
- </a>
- <ul class="blockList">
- <li class="blockList">
- <h4>predict2</h4>
- <pre>public double[] predict2(<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a> sample,
- <a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a> probs)</pre>
- <div class="block">Returns a likelihood logarithm value and an index of the most probable mixture component
- for the given sample.</div>
- <dl>
- <dt><span class="paramLabel">Parameters:</span></dt>
- <dd><code>sample</code> - A sample for classification. It should be a one-channel matrix of
- \(1 \times dims\) or \(dims \times 1\) size.</dd>
- <dd><code>probs</code> - Optional output matrix that contains posterior probabilities of each component
- given the sample. It has \(1 \times nclusters\) size and CV_64FC1 type.
- The method returns a two-element double vector. Zero element is a likelihood logarithm value for
- the sample. First element is an index of the most probable mixture component for the given
- sample.</dd>
- <dt><span class="returnLabel">Returns:</span></dt>
- <dd>automatically generated</dd>
- </dl>
- </li>
- </ul>
- <a name="setClustersNumber-int-">
- <!-- -->
- </a>
- <ul class="blockList">
- <li class="blockList">
- <h4>setClustersNumber</h4>
- <pre>public void setClustersNumber(int val)</pre>
- <div class="block">getClustersNumber SEE: getClustersNumber</div>
- <dl>
- <dt><span class="paramLabel">Parameters:</span></dt>
- <dd><code>val</code> - automatically generated</dd>
- </dl>
- </li>
- </ul>
- <a name="setCovarianceMatrixType-int-">
- <!-- -->
- </a>
- <ul class="blockList">
- <li class="blockList">
- <h4>setCovarianceMatrixType</h4>
- <pre>public void setCovarianceMatrixType(int val)</pre>
- <div class="block">getCovarianceMatrixType SEE: getCovarianceMatrixType</div>
- <dl>
- <dt><span class="paramLabel">Parameters:</span></dt>
- <dd><code>val</code> - automatically generated</dd>
- </dl>
- </li>
- </ul>
- <a name="setTermCriteria-org.opencv.core.TermCriteria-">
- <!-- -->
- </a>
- <ul class="blockList">
- <li class="blockList">
- <h4>setTermCriteria</h4>
- <pre>public void setTermCriteria(<a href="../../../org/opencv/core/TermCriteria.html" title="class in org.opencv.core">TermCriteria</a> val)</pre>
- <div class="block">getTermCriteria SEE: getTermCriteria</div>
- <dl>
- <dt><span class="paramLabel">Parameters:</span></dt>
- <dd><code>val</code> - automatically generated</dd>
- </dl>
- </li>
- </ul>
- <a name="trainE-org.opencv.core.Mat-org.opencv.core.Mat-">
- <!-- -->
- </a>
- <ul class="blockList">
- <li class="blockList">
- <h4>trainE</h4>
- <pre>public boolean trainE(<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a> samples,
- <a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a> means0)</pre>
- <div class="block">Estimate the Gaussian mixture parameters from a samples set.
- This variation starts with Expectation step. You need to provide initial means \(a_k\) of
- mixture components. Optionally you can pass initial weights \(\pi_k\) and covariance matrices
- \(S_k\) of mixture components.</div>
- <dl>
- <dt><span class="paramLabel">Parameters:</span></dt>
- <dd><code>samples</code> - Samples from which the Gaussian mixture model will be estimated. It should be a
- one-channel matrix, each row of which is a sample. If the matrix does not have CV_64F type
- it will be converted to the inner matrix of such type for the further computing.</dd>
- <dd><code>means0</code> - Initial means \(a_k\) of mixture components. It is a one-channel matrix of
- \(nclusters \times dims\) size. If the matrix does not have CV_64F type it will be
- converted to the inner matrix of such type for the further computing.
- covariance matrices is a one-channel matrix of \(dims \times dims\) size. If the matrices
- do not have CV_64F type they will be converted to the inner matrices of such type for the
- further computing.
- floating-point matrix with \(1 \times nclusters\) or \(nclusters \times 1\) size.
- each sample. It has \(nsamples \times 1\) size and CV_64FC1 type.
- \(\texttt{labels}_i=\texttt{arg max}_k(p_{i,k}), i=1..N\) (indices of the most probable
- mixture component for each sample). It has \(nsamples \times 1\) size and CV_32SC1 type.
- mixture component given the each sample. It has \(nsamples \times nclusters\) size and
- CV_64FC1 type.</dd>
- <dt><span class="returnLabel">Returns:</span></dt>
- <dd>automatically generated</dd>
- </dl>
- </li>
- </ul>
- <a name="trainE-org.opencv.core.Mat-org.opencv.core.Mat-org.opencv.core.Mat-">
- <!-- -->
- </a>
- <ul class="blockList">
- <li class="blockList">
- <h4>trainE</h4>
- <pre>public boolean trainE(<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a> samples,
- <a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a> means0,
- <a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a> covs0)</pre>
- <div class="block">Estimate the Gaussian mixture parameters from a samples set.
- This variation starts with Expectation step. You need to provide initial means \(a_k\) of
- mixture components. Optionally you can pass initial weights \(\pi_k\) and covariance matrices
- \(S_k\) of mixture components.</div>
- <dl>
- <dt><span class="paramLabel">Parameters:</span></dt>
- <dd><code>samples</code> - Samples from which the Gaussian mixture model will be estimated. It should be a
- one-channel matrix, each row of which is a sample. If the matrix does not have CV_64F type
- it will be converted to the inner matrix of such type for the further computing.</dd>
- <dd><code>means0</code> - Initial means \(a_k\) of mixture components. It is a one-channel matrix of
- \(nclusters \times dims\) size. If the matrix does not have CV_64F type it will be
- converted to the inner matrix of such type for the further computing.</dd>
- <dd><code>covs0</code> - The vector of initial covariance matrices \(S_k\) of mixture components. Each of
- covariance matrices is a one-channel matrix of \(dims \times dims\) size. If the matrices
- do not have CV_64F type they will be converted to the inner matrices of such type for the
- further computing.
- floating-point matrix with \(1 \times nclusters\) or \(nclusters \times 1\) size.
- each sample. It has \(nsamples \times 1\) size and CV_64FC1 type.
- \(\texttt{labels}_i=\texttt{arg max}_k(p_{i,k}), i=1..N\) (indices of the most probable
- mixture component for each sample). It has \(nsamples \times 1\) size and CV_32SC1 type.
- mixture component given the each sample. It has \(nsamples \times nclusters\) size and
- CV_64FC1 type.</dd>
- <dt><span class="returnLabel">Returns:</span></dt>
- <dd>automatically generated</dd>
- </dl>
- </li>
- </ul>
- <a name="trainE-org.opencv.core.Mat-org.opencv.core.Mat-org.opencv.core.Mat-org.opencv.core.Mat-">
- <!-- -->
- </a>
- <ul class="blockList">
- <li class="blockList">
- <h4>trainE</h4>
- <pre>public boolean trainE(<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a> samples,
- <a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a> means0,
- <a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a> covs0,
- <a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a> weights0)</pre>
- <div class="block">Estimate the Gaussian mixture parameters from a samples set.
- This variation starts with Expectation step. You need to provide initial means \(a_k\) of
- mixture components. Optionally you can pass initial weights \(\pi_k\) and covariance matrices
- \(S_k\) of mixture components.</div>
- <dl>
- <dt><span class="paramLabel">Parameters:</span></dt>
- <dd><code>samples</code> - Samples from which the Gaussian mixture model will be estimated. It should be a
- one-channel matrix, each row of which is a sample. If the matrix does not have CV_64F type
- it will be converted to the inner matrix of such type for the further computing.</dd>
- <dd><code>means0</code> - Initial means \(a_k\) of mixture components. It is a one-channel matrix of
- \(nclusters \times dims\) size. If the matrix does not have CV_64F type it will be
- converted to the inner matrix of such type for the further computing.</dd>
- <dd><code>covs0</code> - The vector of initial covariance matrices \(S_k\) of mixture components. Each of
- covariance matrices is a one-channel matrix of \(dims \times dims\) size. If the matrices
- do not have CV_64F type they will be converted to the inner matrices of such type for the
- further computing.</dd>
- <dd><code>weights0</code> - Initial weights \(\pi_k\) of mixture components. It should be a one-channel
- floating-point matrix with \(1 \times nclusters\) or \(nclusters \times 1\) size.
- each sample. It has \(nsamples \times 1\) size and CV_64FC1 type.
- \(\texttt{labels}_i=\texttt{arg max}_k(p_{i,k}), i=1..N\) (indices of the most probable
- mixture component for each sample). It has \(nsamples \times 1\) size and CV_32SC1 type.
- mixture component given the each sample. It has \(nsamples \times nclusters\) size and
- CV_64FC1 type.</dd>
- <dt><span class="returnLabel">Returns:</span></dt>
- <dd>automatically generated</dd>
- </dl>
- </li>
- </ul>
- <a name="trainE-org.opencv.core.Mat-org.opencv.core.Mat-org.opencv.core.Mat-org.opencv.core.Mat-org.opencv.core.Mat-">
- <!-- -->
- </a>
- <ul class="blockList">
- <li class="blockList">
- <h4>trainE</h4>
- <pre>public boolean trainE(<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a> samples,
- <a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a> means0,
- <a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a> covs0,
- <a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a> weights0,
- <a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a> logLikelihoods)</pre>
- <div class="block">Estimate the Gaussian mixture parameters from a samples set.
- This variation starts with Expectation step. You need to provide initial means \(a_k\) of
- mixture components. Optionally you can pass initial weights \(\pi_k\) and covariance matrices
- \(S_k\) of mixture components.</div>
- <dl>
- <dt><span class="paramLabel">Parameters:</span></dt>
- <dd><code>samples</code> - Samples from which the Gaussian mixture model will be estimated. It should be a
- one-channel matrix, each row of which is a sample. If the matrix does not have CV_64F type
- it will be converted to the inner matrix of such type for the further computing.</dd>
- <dd><code>means0</code> - Initial means \(a_k\) of mixture components. It is a one-channel matrix of
- \(nclusters \times dims\) size. If the matrix does not have CV_64F type it will be
- converted to the inner matrix of such type for the further computing.</dd>
- <dd><code>covs0</code> - The vector of initial covariance matrices \(S_k\) of mixture components. Each of
- covariance matrices is a one-channel matrix of \(dims \times dims\) size. If the matrices
- do not have CV_64F type they will be converted to the inner matrices of such type for the
- further computing.</dd>
- <dd><code>weights0</code> - Initial weights \(\pi_k\) of mixture components. It should be a one-channel
- floating-point matrix with \(1 \times nclusters\) or \(nclusters \times 1\) size.</dd>
- <dd><code>logLikelihoods</code> - The optional output matrix that contains a likelihood logarithm value for
- each sample. It has \(nsamples \times 1\) size and CV_64FC1 type.
- \(\texttt{labels}_i=\texttt{arg max}_k(p_{i,k}), i=1..N\) (indices of the most probable
- mixture component for each sample). It has \(nsamples \times 1\) size and CV_32SC1 type.
- mixture component given the each sample. It has \(nsamples \times nclusters\) size and
- CV_64FC1 type.</dd>
- <dt><span class="returnLabel">Returns:</span></dt>
- <dd>automatically generated</dd>
- </dl>
- </li>
- </ul>
- <a name="trainE-org.opencv.core.Mat-org.opencv.core.Mat-org.opencv.core.Mat-org.opencv.core.Mat-org.opencv.core.Mat-org.opencv.core.Mat-">
- <!-- -->
- </a>
- <ul class="blockList">
- <li class="blockList">
- <h4>trainE</h4>
- <pre>public boolean trainE(<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a> samples,
- <a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a> means0,
- <a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a> covs0,
- <a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a> weights0,
- <a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a> logLikelihoods,
- <a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a> labels)</pre>
- <div class="block">Estimate the Gaussian mixture parameters from a samples set.
- This variation starts with Expectation step. You need to provide initial means \(a_k\) of
- mixture components. Optionally you can pass initial weights \(\pi_k\) and covariance matrices
- \(S_k\) of mixture components.</div>
- <dl>
- <dt><span class="paramLabel">Parameters:</span></dt>
- <dd><code>samples</code> - Samples from which the Gaussian mixture model will be estimated. It should be a
- one-channel matrix, each row of which is a sample. If the matrix does not have CV_64F type
- it will be converted to the inner matrix of such type for the further computing.</dd>
- <dd><code>means0</code> - Initial means \(a_k\) of mixture components. It is a one-channel matrix of
- \(nclusters \times dims\) size. If the matrix does not have CV_64F type it will be
- converted to the inner matrix of such type for the further computing.</dd>
- <dd><code>covs0</code> - The vector of initial covariance matrices \(S_k\) of mixture components. Each of
- covariance matrices is a one-channel matrix of \(dims \times dims\) size. If the matrices
- do not have CV_64F type they will be converted to the inner matrices of such type for the
- further computing.</dd>
- <dd><code>weights0</code> - Initial weights \(\pi_k\) of mixture components. It should be a one-channel
- floating-point matrix with \(1 \times nclusters\) or \(nclusters \times 1\) size.</dd>
- <dd><code>logLikelihoods</code> - The optional output matrix that contains a likelihood logarithm value for
- each sample. It has \(nsamples \times 1\) size and CV_64FC1 type.</dd>
- <dd><code>labels</code> - The optional output "class label" for each sample:
- \(\texttt{labels}_i=\texttt{arg max}_k(p_{i,k}), i=1..N\) (indices of the most probable
- mixture component for each sample). It has \(nsamples \times 1\) size and CV_32SC1 type.
- mixture component given the each sample. It has \(nsamples \times nclusters\) size and
- CV_64FC1 type.</dd>
- <dt><span class="returnLabel">Returns:</span></dt>
- <dd>automatically generated</dd>
- </dl>
- </li>
- </ul>
- <a name="trainE-org.opencv.core.Mat-org.opencv.core.Mat-org.opencv.core.Mat-org.opencv.core.Mat-org.opencv.core.Mat-org.opencv.core.Mat-org.opencv.core.Mat-">
- <!-- -->
- </a>
- <ul class="blockList">
- <li class="blockList">
- <h4>trainE</h4>
- <pre>public boolean trainE(<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a> samples,
- <a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a> means0,
- <a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a> covs0,
- <a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a> weights0,
- <a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a> logLikelihoods,
- <a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a> labels,
- <a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a> probs)</pre>
- <div class="block">Estimate the Gaussian mixture parameters from a samples set.
- This variation starts with Expectation step. You need to provide initial means \(a_k\) of
- mixture components. Optionally you can pass initial weights \(\pi_k\) and covariance matrices
- \(S_k\) of mixture components.</div>
- <dl>
- <dt><span class="paramLabel">Parameters:</span></dt>
- <dd><code>samples</code> - Samples from which the Gaussian mixture model will be estimated. It should be a
- one-channel matrix, each row of which is a sample. If the matrix does not have CV_64F type
- it will be converted to the inner matrix of such type for the further computing.</dd>
- <dd><code>means0</code> - Initial means \(a_k\) of mixture components. It is a one-channel matrix of
- \(nclusters \times dims\) size. If the matrix does not have CV_64F type it will be
- converted to the inner matrix of such type for the further computing.</dd>
- <dd><code>covs0</code> - The vector of initial covariance matrices \(S_k\) of mixture components. Each of
- covariance matrices is a one-channel matrix of \(dims \times dims\) size. If the matrices
- do not have CV_64F type they will be converted to the inner matrices of such type for the
- further computing.</dd>
- <dd><code>weights0</code> - Initial weights \(\pi_k\) of mixture components. It should be a one-channel
- floating-point matrix with \(1 \times nclusters\) or \(nclusters \times 1\) size.</dd>
- <dd><code>logLikelihoods</code> - The optional output matrix that contains a likelihood logarithm value for
- each sample. It has \(nsamples \times 1\) size and CV_64FC1 type.</dd>
- <dd><code>labels</code> - The optional output "class label" for each sample:
- \(\texttt{labels}_i=\texttt{arg max}_k(p_{i,k}), i=1..N\) (indices of the most probable
- mixture component for each sample). It has \(nsamples \times 1\) size and CV_32SC1 type.</dd>
- <dd><code>probs</code> - The optional output matrix that contains posterior probabilities of each Gaussian
- mixture component given the each sample. It has \(nsamples \times nclusters\) size and
- CV_64FC1 type.</dd>
- <dt><span class="returnLabel">Returns:</span></dt>
- <dd>automatically generated</dd>
- </dl>
- </li>
- </ul>
- <a name="trainEM-org.opencv.core.Mat-">
- <!-- -->
- </a>
- <ul class="blockList">
- <li class="blockList">
- <h4>trainEM</h4>
- <pre>public boolean trainEM(<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a> samples)</pre>
- <div class="block">Estimate the Gaussian mixture parameters from a samples set.
- This variation starts with Expectation step. Initial values of the model parameters will be
- estimated by the k-means algorithm.
- Unlike many of the ML models, %EM is an unsupervised learning algorithm and it does not take
- responses (class labels or function values) as input. Instead, it computes the *Maximum
- Likelihood Estimate* of the Gaussian mixture parameters from an input sample set, stores all the
- parameters inside the structure: \(p_{i,k}\) in probs, \(a_k\) in means , \(S_k\) in
- covs[k], \(\pi_k\) in weights , and optionally computes the output "class label" for each
- sample: \(\texttt{labels}_i=\texttt{arg max}_k(p_{i,k}), i=1..N\) (indices of the most
- probable mixture component for each sample).
- The trained model can be used further for prediction, just like any other classifier. The
- trained model is similar to the NormalBayesClassifier.</div>
- <dl>
- <dt><span class="paramLabel">Parameters:</span></dt>
- <dd><code>samples</code> - Samples from which the Gaussian mixture model will be estimated. It should be a
- one-channel matrix, each row of which is a sample. If the matrix does not have CV_64F type
- it will be converted to the inner matrix of such type for the further computing.
- each sample. It has \(nsamples \times 1\) size and CV_64FC1 type.
- \(\texttt{labels}_i=\texttt{arg max}_k(p_{i,k}), i=1..N\) (indices of the most probable
- mixture component for each sample). It has \(nsamples \times 1\) size and CV_32SC1 type.
- mixture component given the each sample. It has \(nsamples \times nclusters\) size and
- CV_64FC1 type.</dd>
- <dt><span class="returnLabel">Returns:</span></dt>
- <dd>automatically generated</dd>
- </dl>
- </li>
- </ul>
- <a name="trainEM-org.opencv.core.Mat-org.opencv.core.Mat-">
- <!-- -->
- </a>
- <ul class="blockList">
- <li class="blockList">
- <h4>trainEM</h4>
- <pre>public boolean trainEM(<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a> samples,
- <a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a> logLikelihoods)</pre>
- <div class="block">Estimate the Gaussian mixture parameters from a samples set.
- This variation starts with Expectation step. Initial values of the model parameters will be
- estimated by the k-means algorithm.
- Unlike many of the ML models, %EM is an unsupervised learning algorithm and it does not take
- responses (class labels or function values) as input. Instead, it computes the *Maximum
- Likelihood Estimate* of the Gaussian mixture parameters from an input sample set, stores all the
- parameters inside the structure: \(p_{i,k}\) in probs, \(a_k\) in means , \(S_k\) in
- covs[k], \(\pi_k\) in weights , and optionally computes the output "class label" for each
- sample: \(\texttt{labels}_i=\texttt{arg max}_k(p_{i,k}), i=1..N\) (indices of the most
- probable mixture component for each sample).
- The trained model can be used further for prediction, just like any other classifier. The
- trained model is similar to the NormalBayesClassifier.</div>
- <dl>
- <dt><span class="paramLabel">Parameters:</span></dt>
- <dd><code>samples</code> - Samples from which the Gaussian mixture model will be estimated. It should be a
- one-channel matrix, each row of which is a sample. If the matrix does not have CV_64F type
- it will be converted to the inner matrix of such type for the further computing.</dd>
- <dd><code>logLikelihoods</code> - The optional output matrix that contains a likelihood logarithm value for
- each sample. It has \(nsamples \times 1\) size and CV_64FC1 type.
- \(\texttt{labels}_i=\texttt{arg max}_k(p_{i,k}), i=1..N\) (indices of the most probable
- mixture component for each sample). It has \(nsamples \times 1\) size and CV_32SC1 type.
- mixture component given the each sample. It has \(nsamples \times nclusters\) size and
- CV_64FC1 type.</dd>
- <dt><span class="returnLabel">Returns:</span></dt>
- <dd>automatically generated</dd>
- </dl>
- </li>
- </ul>
- <a name="trainEM-org.opencv.core.Mat-org.opencv.core.Mat-org.opencv.core.Mat-">
- <!-- -->
- </a>
- <ul class="blockList">
- <li class="blockList">
- <h4>trainEM</h4>
- <pre>public boolean trainEM(<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a> samples,
- <a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a> logLikelihoods,
- <a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a> labels)</pre>
- <div class="block">Estimate the Gaussian mixture parameters from a samples set.
- This variation starts with Expectation step. Initial values of the model parameters will be
- estimated by the k-means algorithm.
- Unlike many of the ML models, %EM is an unsupervised learning algorithm and it does not take
- responses (class labels or function values) as input. Instead, it computes the *Maximum
- Likelihood Estimate* of the Gaussian mixture parameters from an input sample set, stores all the
- parameters inside the structure: \(p_{i,k}\) in probs, \(a_k\) in means , \(S_k\) in
- covs[k], \(\pi_k\) in weights , and optionally computes the output "class label" for each
- sample: \(\texttt{labels}_i=\texttt{arg max}_k(p_{i,k}), i=1..N\) (indices of the most
- probable mixture component for each sample).
- The trained model can be used further for prediction, just like any other classifier. The
- trained model is similar to the NormalBayesClassifier.</div>
- <dl>
- <dt><span class="paramLabel">Parameters:</span></dt>
- <dd><code>samples</code> - Samples from which the Gaussian mixture model will be estimated. It should be a
- one-channel matrix, each row of which is a sample. If the matrix does not have CV_64F type
- it will be converted to the inner matrix of such type for the further computing.</dd>
- <dd><code>logLikelihoods</code> - The optional output matrix that contains a likelihood logarithm value for
- each sample. It has \(nsamples \times 1\) size and CV_64FC1 type.</dd>
- <dd><code>labels</code> - The optional output "class label" for each sample:
- \(\texttt{labels}_i=\texttt{arg max}_k(p_{i,k}), i=1..N\) (indices of the most probable
- mixture component for each sample). It has \(nsamples \times 1\) size and CV_32SC1 type.
- mixture component given the each sample. It has \(nsamples \times nclusters\) size and
- CV_64FC1 type.</dd>
- <dt><span class="returnLabel">Returns:</span></dt>
- <dd>automatically generated</dd>
- </dl>
- </li>
- </ul>
- <a name="trainEM-org.opencv.core.Mat-org.opencv.core.Mat-org.opencv.core.Mat-org.opencv.core.Mat-">
- <!-- -->
- </a>
- <ul class="blockList">
- <li class="blockList">
- <h4>trainEM</h4>
- <pre>public boolean trainEM(<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a> samples,
- <a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a> logLikelihoods,
- <a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a> labels,
- <a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a> probs)</pre>
- <div class="block">Estimate the Gaussian mixture parameters from a samples set.
- This variation starts with Expectation step. Initial values of the model parameters will be
- estimated by the k-means algorithm.
- Unlike many of the ML models, %EM is an unsupervised learning algorithm and it does not take
- responses (class labels or function values) as input. Instead, it computes the *Maximum
- Likelihood Estimate* of the Gaussian mixture parameters from an input sample set, stores all the
- parameters inside the structure: \(p_{i,k}\) in probs, \(a_k\) in means , \(S_k\) in
- covs[k], \(\pi_k\) in weights , and optionally computes the output "class label" for each
- sample: \(\texttt{labels}_i=\texttt{arg max}_k(p_{i,k}), i=1..N\) (indices of the most
- probable mixture component for each sample).
- The trained model can be used further for prediction, just like any other classifier. The
- trained model is similar to the NormalBayesClassifier.</div>
- <dl>
- <dt><span class="paramLabel">Parameters:</span></dt>
- <dd><code>samples</code> - Samples from which the Gaussian mixture model will be estimated. It should be a
- one-channel matrix, each row of which is a sample. If the matrix does not have CV_64F type
- it will be converted to the inner matrix of such type for the further computing.</dd>
- <dd><code>logLikelihoods</code> - The optional output matrix that contains a likelihood logarithm value for
- each sample. It has \(nsamples \times 1\) size and CV_64FC1 type.</dd>
- <dd><code>labels</code> - The optional output "class label" for each sample:
- \(\texttt{labels}_i=\texttt{arg max}_k(p_{i,k}), i=1..N\) (indices of the most probable
- mixture component for each sample). It has \(nsamples \times 1\) size and CV_32SC1 type.</dd>
- <dd><code>probs</code> - The optional output matrix that contains posterior probabilities of each Gaussian
- mixture component given the each sample. It has \(nsamples \times nclusters\) size and
- CV_64FC1 type.</dd>
- <dt><span class="returnLabel">Returns:</span></dt>
- <dd>automatically generated</dd>
- </dl>
- </li>
- </ul>
- <a name="trainM-org.opencv.core.Mat-org.opencv.core.Mat-">
- <!-- -->
- </a>
- <ul class="blockList">
- <li class="blockList">
- <h4>trainM</h4>
- <pre>public boolean trainM(<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a> samples,
- <a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a> probs0)</pre>
- <div class="block">Estimate the Gaussian mixture parameters from a samples set.
- This variation starts with Maximization step. You need to provide initial probabilities
- \(p_{i,k}\) to use this option.</div>
- <dl>
- <dt><span class="paramLabel">Parameters:</span></dt>
- <dd><code>samples</code> - Samples from which the Gaussian mixture model will be estimated. It should be a
- one-channel matrix, each row of which is a sample. If the matrix does not have CV_64F type
- it will be converted to the inner matrix of such type for the further computing.</dd>
- <dd><code>probs0</code> - the probabilities
- each sample. It has \(nsamples \times 1\) size and CV_64FC1 type.
- \(\texttt{labels}_i=\texttt{arg max}_k(p_{i,k}), i=1..N\) (indices of the most probable
- mixture component for each sample). It has \(nsamples \times 1\) size and CV_32SC1 type.
- mixture component given the each sample. It has \(nsamples \times nclusters\) size and
- CV_64FC1 type.</dd>
- <dt><span class="returnLabel">Returns:</span></dt>
- <dd>automatically generated</dd>
- </dl>
- </li>
- </ul>
- <a name="trainM-org.opencv.core.Mat-org.opencv.core.Mat-org.opencv.core.Mat-">
- <!-- -->
- </a>
- <ul class="blockList">
- <li class="blockList">
- <h4>trainM</h4>
- <pre>public boolean trainM(<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a> samples,
- <a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a> probs0,
- <a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a> logLikelihoods)</pre>
- <div class="block">Estimate the Gaussian mixture parameters from a samples set.
- This variation starts with Maximization step. You need to provide initial probabilities
- \(p_{i,k}\) to use this option.</div>
- <dl>
- <dt><span class="paramLabel">Parameters:</span></dt>
- <dd><code>samples</code> - Samples from which the Gaussian mixture model will be estimated. It should be a
- one-channel matrix, each row of which is a sample. If the matrix does not have CV_64F type
- it will be converted to the inner matrix of such type for the further computing.</dd>
- <dd><code>probs0</code> - the probabilities</dd>
- <dd><code>logLikelihoods</code> - The optional output matrix that contains a likelihood logarithm value for
- each sample. It has \(nsamples \times 1\) size and CV_64FC1 type.
- \(\texttt{labels}_i=\texttt{arg max}_k(p_{i,k}), i=1..N\) (indices of the most probable
- mixture component for each sample). It has \(nsamples \times 1\) size and CV_32SC1 type.
- mixture component given the each sample. It has \(nsamples \times nclusters\) size and
- CV_64FC1 type.</dd>
- <dt><span class="returnLabel">Returns:</span></dt>
- <dd>automatically generated</dd>
- </dl>
- </li>
- </ul>
- <a name="trainM-org.opencv.core.Mat-org.opencv.core.Mat-org.opencv.core.Mat-org.opencv.core.Mat-">
- <!-- -->
- </a>
- <ul class="blockList">
- <li class="blockList">
- <h4>trainM</h4>
- <pre>public boolean trainM(<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a> samples,
- <a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a> probs0,
- <a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a> logLikelihoods,
- <a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a> labels)</pre>
- <div class="block">Estimate the Gaussian mixture parameters from a samples set.
- This variation starts with Maximization step. You need to provide initial probabilities
- \(p_{i,k}\) to use this option.</div>
- <dl>
- <dt><span class="paramLabel">Parameters:</span></dt>
- <dd><code>samples</code> - Samples from which the Gaussian mixture model will be estimated. It should be a
- one-channel matrix, each row of which is a sample. If the matrix does not have CV_64F type
- it will be converted to the inner matrix of such type for the further computing.</dd>
- <dd><code>probs0</code> - the probabilities</dd>
- <dd><code>logLikelihoods</code> - The optional output matrix that contains a likelihood logarithm value for
- each sample. It has \(nsamples \times 1\) size and CV_64FC1 type.</dd>
- <dd><code>labels</code> - The optional output "class label" for each sample:
- \(\texttt{labels}_i=\texttt{arg max}_k(p_{i,k}), i=1..N\) (indices of the most probable
- mixture component for each sample). It has \(nsamples \times 1\) size and CV_32SC1 type.
- mixture component given the each sample. It has \(nsamples \times nclusters\) size and
- CV_64FC1 type.</dd>
- <dt><span class="returnLabel">Returns:</span></dt>
- <dd>automatically generated</dd>
- </dl>
- </li>
- </ul>
- <a name="trainM-org.opencv.core.Mat-org.opencv.core.Mat-org.opencv.core.Mat-org.opencv.core.Mat-org.opencv.core.Mat-">
- <!-- -->
- </a>
- <ul class="blockListLast">
- <li class="blockList">
- <h4>trainM</h4>
- <pre>public boolean trainM(<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a> samples,
- <a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a> probs0,
- <a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a> logLikelihoods,
- <a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a> labels,
- <a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a> probs)</pre>
- <div class="block">Estimate the Gaussian mixture parameters from a samples set.
- This variation starts with Maximization step. You need to provide initial probabilities
- \(p_{i,k}\) to use this option.</div>
- <dl>
- <dt><span class="paramLabel">Parameters:</span></dt>
- <dd><code>samples</code> - Samples from which the Gaussian mixture model will be estimated. It should be a
- one-channel matrix, each row of which is a sample. If the matrix does not have CV_64F type
- it will be converted to the inner matrix of such type for the further computing.</dd>
- <dd><code>probs0</code> - the probabilities</dd>
- <dd><code>logLikelihoods</code> - The optional output matrix that contains a likelihood logarithm value for
- each sample. It has \(nsamples \times 1\) size and CV_64FC1 type.</dd>
- <dd><code>labels</code> - The optional output "class label" for each sample:
- \(\texttt{labels}_i=\texttt{arg max}_k(p_{i,k}), i=1..N\) (indices of the most probable
- mixture component for each sample). It has \(nsamples \times 1\) size and CV_32SC1 type.</dd>
- <dd><code>probs</code> - The optional output matrix that contains posterior probabilities of each Gaussian
- mixture component given the each sample. It has \(nsamples \times nclusters\) size and
- CV_64FC1 type.</dd>
- <dt><span class="returnLabel">Returns:</span></dt>
- <dd>automatically generated</dd>
- </dl>
- </li>
- </ul>
- </li>
- </ul>
- </li>
- </ul>
- </div>
- </div>
- <!-- ========= END OF CLASS DATA ========= -->
- <!-- ======= START OF BOTTOM NAVBAR ====== -->
- <div class="bottomNav"><a name="navbar.bottom">
- <!-- -->
- </a>
- <div class="skipNav"><a href="#skip.navbar.bottom" title="Skip navigation links">Skip navigation links</a></div>
- <a name="navbar.bottom.firstrow">
- <!-- -->
- </a>
- <ul class="navList" title="Navigation">
- <li><a href="../../../overview-summary.html">Overview</a></li>
- <li><a href="package-summary.html">Package</a></li>
- <li class="navBarCell1Rev">Class</li>
- <li><a href="package-tree.html">Tree</a></li>
- <li><a href="../../../index-all.html">Index</a></li>
- <li><a href="../../../help-doc.html">Help</a></li>
- </ul>
- <div class="aboutLanguage">
- <script>
- var url = window.location.href;
- var pos = url.lastIndexOf('/javadoc/');
- url = pos >= 0 ? (url.substring(0, pos) + '/javadoc/mymath.js') : (window.location.origin + '/mymath.js');
- var script = document.createElement('script');
- script.src = 'https://cdnjs.cloudflare.com/ajax/libs/mathjax/2.7.0/MathJax.js?config=TeX-AMS-MML_HTMLorMML,' + url;
- document.getElementsByTagName('head')[0].appendChild(script);
- </script>
- </div>
- </div>
- <div class="subNav">
- <ul class="navList">
- <li><a href="../../../org/opencv/ml/DTrees.html" title="class in org.opencv.ml"><span class="typeNameLink">Prev Class</span></a></li>
- <li><a href="../../../org/opencv/ml/KNearest.html" title="class in org.opencv.ml"><span class="typeNameLink">Next Class</span></a></li>
- </ul>
- <ul class="navList">
- <li><a href="../../../index.html?org/opencv/ml/EM.html" target="_top">Frames</a></li>
- <li><a href="EM.html" target="_top">No Frames</a></li>
- </ul>
- <ul class="navList" id="allclasses_navbar_bottom">
- <li><a href="../../../allclasses-noframe.html">All Classes</a></li>
- </ul>
- <div>
- <script type="text/javascript"><!--
- allClassesLink = document.getElementById("allclasses_navbar_bottom");
- if(window==top) {
- allClassesLink.style.display = "block";
- }
- else {
- allClassesLink.style.display = "none";
- }
- //-->
- </script>
- </div>
- <div>
- <ul class="subNavList">
- <li>Summary: </li>
- <li>Nested | </li>
- <li><a href="#field.summary">Field</a> | </li>
- <li>Constr | </li>
- <li><a href="#method.summary">Method</a></li>
- </ul>
- <ul class="subNavList">
- <li>Detail: </li>
- <li><a href="#field.detail">Field</a> | </li>
- <li>Constr | </li>
- <li><a href="#method.detail">Method</a></li>
- </ul>
- </div>
- <a name="skip.navbar.bottom">
- <!-- -->
- </a></div>
- <!-- ======== END OF BOTTOM NAVBAR ======= -->
- <p class="legalCopy"><small>Generated on 2023-06-28 12:47:21 / OpenCV 4.8.0</small></p>
- </body>
- </html>
|