EM.html 79 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503
  1. <!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN" "http://www.w3.org/TR/html4/loose.dtd">
  2. <!-- NewPage -->
  3. <html lang="en">
  4. <head>
  5. <!-- Generated by javadoc (1.8.0_312) on Wed Jun 28 12:47:24 UTC 2023 -->
  6. <meta http-equiv="Content-Type" content="text/html; charset=UTF-8">
  7. <title>EM (OpenCV 4.8.0 Java documentation)</title>
  8. <meta name="date" content="2023-06-28">
  9. <link rel="stylesheet" type="text/css" href="../../../stylesheet.css" title="Style">
  10. <script type="text/javascript" src="../../../script.js"></script>
  11. </head>
  12. <body>
  13. <script type="text/javascript"><!--
  14. try {
  15. if (location.href.indexOf('is-external=true') == -1) {
  16. parent.document.title="EM (OpenCV 4.8.0 Java documentation)";
  17. }
  18. }
  19. catch(err) {
  20. }
  21. //-->
  22. var methods = {"i0":9,"i1":9,"i2":10,"i3":10,"i4":10,"i5":10,"i6":10,"i7":10,"i8":9,"i9":9,"i10":10,"i11":10,"i12":10,"i13":10,"i14":10,"i15":10,"i16":10,"i17":10,"i18":10,"i19":10,"i20":10,"i21":10,"i22":10,"i23":10,"i24":10,"i25":10,"i26":10,"i27":10,"i28":10,"i29":10,"i30":10};
  23. var tabs = {65535:["t0","All Methods"],1:["t1","Static Methods"],2:["t2","Instance Methods"],8:["t4","Concrete Methods"]};
  24. var altColor = "altColor";
  25. var rowColor = "rowColor";
  26. var tableTab = "tableTab";
  27. var activeTableTab = "activeTableTab";
  28. </script>
  29. <noscript>
  30. <div>JavaScript is disabled on your browser.</div>
  31. </noscript>
  32. <!-- ========= START OF TOP NAVBAR ======= -->
  33. <div class="topNav"><a name="navbar.top">
  34. <!-- -->
  35. </a>
  36. <div class="skipNav"><a href="#skip.navbar.top" title="Skip navigation links">Skip navigation links</a></div>
  37. <a name="navbar.top.firstrow">
  38. <!-- -->
  39. </a>
  40. <ul class="navList" title="Navigation">
  41. <li><a href="../../../overview-summary.html">Overview</a></li>
  42. <li><a href="package-summary.html">Package</a></li>
  43. <li class="navBarCell1Rev">Class</li>
  44. <li><a href="package-tree.html">Tree</a></li>
  45. <li><a href="../../../index-all.html">Index</a></li>
  46. <li><a href="../../../help-doc.html">Help</a></li>
  47. </ul>
  48. <div class="aboutLanguage">
  49. <script>
  50. var url = window.location.href;
  51. var pos = url.lastIndexOf('/javadoc/');
  52. url = pos >= 0 ? (url.substring(0, pos) + '/javadoc/mymath.js') : (window.location.origin + '/mymath.js');
  53. var script = document.createElement('script');
  54. script.src = 'https://cdnjs.cloudflare.com/ajax/libs/mathjax/2.7.0/MathJax.js?config=TeX-AMS-MML_HTMLorMML,' + url;
  55. document.getElementsByTagName('head')[0].appendChild(script);
  56. </script>
  57. </div>
  58. </div>
  59. <div class="subNav">
  60. <ul class="navList">
  61. <li><a href="../../../org/opencv/ml/DTrees.html" title="class in org.opencv.ml"><span class="typeNameLink">Prev&nbsp;Class</span></a></li>
  62. <li><a href="../../../org/opencv/ml/KNearest.html" title="class in org.opencv.ml"><span class="typeNameLink">Next&nbsp;Class</span></a></li>
  63. </ul>
  64. <ul class="navList">
  65. <li><a href="../../../index.html?org/opencv/ml/EM.html" target="_top">Frames</a></li>
  66. <li><a href="EM.html" target="_top">No&nbsp;Frames</a></li>
  67. </ul>
  68. <ul class="navList" id="allclasses_navbar_top">
  69. <li><a href="../../../allclasses-noframe.html">All&nbsp;Classes</a></li>
  70. </ul>
  71. <div>
  72. <script type="text/javascript"><!--
  73. allClassesLink = document.getElementById("allclasses_navbar_top");
  74. if(window==top) {
  75. allClassesLink.style.display = "block";
  76. }
  77. else {
  78. allClassesLink.style.display = "none";
  79. }
  80. //-->
  81. </script>
  82. </div>
  83. <div>
  84. <ul class="subNavList">
  85. <li>Summary:&nbsp;</li>
  86. <li>Nested&nbsp;|&nbsp;</li>
  87. <li><a href="#field.summary">Field</a>&nbsp;|&nbsp;</li>
  88. <li>Constr&nbsp;|&nbsp;</li>
  89. <li><a href="#method.summary">Method</a></li>
  90. </ul>
  91. <ul class="subNavList">
  92. <li>Detail:&nbsp;</li>
  93. <li><a href="#field.detail">Field</a>&nbsp;|&nbsp;</li>
  94. <li>Constr&nbsp;|&nbsp;</li>
  95. <li><a href="#method.detail">Method</a></li>
  96. </ul>
  97. </div>
  98. <a name="skip.navbar.top">
  99. <!-- -->
  100. </a></div>
  101. <!-- ========= END OF TOP NAVBAR ========= -->
  102. <!-- ======== START OF CLASS DATA ======== -->
  103. <div class="header">
  104. <div class="subTitle">org.opencv.ml</div>
  105. <h2 title="Class EM" class="title">Class EM</h2>
  106. </div>
  107. <div class="contentContainer">
  108. <ul class="inheritance">
  109. <li>java.lang.Object</li>
  110. <li>
  111. <ul class="inheritance">
  112. <li><a href="../../../org/opencv/core/Algorithm.html" title="class in org.opencv.core">org.opencv.core.Algorithm</a></li>
  113. <li>
  114. <ul class="inheritance">
  115. <li><a href="../../../org/opencv/ml/StatModel.html" title="class in org.opencv.ml">org.opencv.ml.StatModel</a></li>
  116. <li>
  117. <ul class="inheritance">
  118. <li>org.opencv.ml.EM</li>
  119. </ul>
  120. </li>
  121. </ul>
  122. </li>
  123. </ul>
  124. </li>
  125. </ul>
  126. <div class="description">
  127. <ul class="blockList">
  128. <li class="blockList">
  129. <hr>
  130. <br>
  131. <pre>public class <span class="typeNameLabel">EM</span>
  132. extends <a href="../../../org/opencv/ml/StatModel.html" title="class in org.opencv.ml">StatModel</a></pre>
  133. <div class="block">The class implements the Expectation Maximization algorithm.
  134. SEE: REF: ml_intro_em</div>
  135. </li>
  136. </ul>
  137. </div>
  138. <div class="summary">
  139. <ul class="blockList">
  140. <li class="blockList">
  141. <!-- =========== FIELD SUMMARY =========== -->
  142. <ul class="blockList">
  143. <li class="blockList"><a name="field.summary">
  144. <!-- -->
  145. </a>
  146. <h3>Field Summary</h3>
  147. <table class="memberSummary" border="0" cellpadding="3" cellspacing="0" summary="Field Summary table, listing fields, and an explanation">
  148. <caption><span>Fields</span><span class="tabEnd">&nbsp;</span></caption>
  149. <tr>
  150. <th class="colFirst" scope="col">Modifier and Type</th>
  151. <th class="colLast" scope="col">Field and Description</th>
  152. </tr>
  153. <tr class="altColor">
  154. <td class="colFirst"><code>static int</code></td>
  155. <td class="colLast"><code><span class="memberNameLink"><a href="../../../org/opencv/ml/EM.html#COV_MAT_DEFAULT">COV_MAT_DEFAULT</a></span></code>&nbsp;</td>
  156. </tr>
  157. <tr class="rowColor">
  158. <td class="colFirst"><code>static int</code></td>
  159. <td class="colLast"><code><span class="memberNameLink"><a href="../../../org/opencv/ml/EM.html#COV_MAT_DIAGONAL">COV_MAT_DIAGONAL</a></span></code>&nbsp;</td>
  160. </tr>
  161. <tr class="altColor">
  162. <td class="colFirst"><code>static int</code></td>
  163. <td class="colLast"><code><span class="memberNameLink"><a href="../../../org/opencv/ml/EM.html#COV_MAT_GENERIC">COV_MAT_GENERIC</a></span></code>&nbsp;</td>
  164. </tr>
  165. <tr class="rowColor">
  166. <td class="colFirst"><code>static int</code></td>
  167. <td class="colLast"><code><span class="memberNameLink"><a href="../../../org/opencv/ml/EM.html#COV_MAT_SPHERICAL">COV_MAT_SPHERICAL</a></span></code>&nbsp;</td>
  168. </tr>
  169. <tr class="altColor">
  170. <td class="colFirst"><code>static int</code></td>
  171. <td class="colLast"><code><span class="memberNameLink"><a href="../../../org/opencv/ml/EM.html#DEFAULT_MAX_ITERS">DEFAULT_MAX_ITERS</a></span></code>&nbsp;</td>
  172. </tr>
  173. <tr class="rowColor">
  174. <td class="colFirst"><code>static int</code></td>
  175. <td class="colLast"><code><span class="memberNameLink"><a href="../../../org/opencv/ml/EM.html#DEFAULT_NCLUSTERS">DEFAULT_NCLUSTERS</a></span></code>&nbsp;</td>
  176. </tr>
  177. <tr class="altColor">
  178. <td class="colFirst"><code>static int</code></td>
  179. <td class="colLast"><code><span class="memberNameLink"><a href="../../../org/opencv/ml/EM.html#START_AUTO_STEP">START_AUTO_STEP</a></span></code>&nbsp;</td>
  180. </tr>
  181. <tr class="rowColor">
  182. <td class="colFirst"><code>static int</code></td>
  183. <td class="colLast"><code><span class="memberNameLink"><a href="../../../org/opencv/ml/EM.html#START_E_STEP">START_E_STEP</a></span></code>&nbsp;</td>
  184. </tr>
  185. <tr class="altColor">
  186. <td class="colFirst"><code>static int</code></td>
  187. <td class="colLast"><code><span class="memberNameLink"><a href="../../../org/opencv/ml/EM.html#START_M_STEP">START_M_STEP</a></span></code>&nbsp;</td>
  188. </tr>
  189. </table>
  190. <ul class="blockList">
  191. <li class="blockList"><a name="fields.inherited.from.class.org.opencv.ml.StatModel">
  192. <!-- -->
  193. </a>
  194. <h3>Fields inherited from class&nbsp;org.opencv.ml.<a href="../../../org/opencv/ml/StatModel.html" title="class in org.opencv.ml">StatModel</a></h3>
  195. <code><a href="../../../org/opencv/ml/StatModel.html#COMPRESSED_INPUT">COMPRESSED_INPUT</a>, <a href="../../../org/opencv/ml/StatModel.html#PREPROCESSED_INPUT">PREPROCESSED_INPUT</a>, <a href="../../../org/opencv/ml/StatModel.html#RAW_OUTPUT">RAW_OUTPUT</a>, <a href="../../../org/opencv/ml/StatModel.html#UPDATE_MODEL">UPDATE_MODEL</a></code></li>
  196. </ul>
  197. </li>
  198. </ul>
  199. <!-- ========== METHOD SUMMARY =========== -->
  200. <ul class="blockList">
  201. <li class="blockList"><a name="method.summary">
  202. <!-- -->
  203. </a>
  204. <h3>Method Summary</h3>
  205. <table class="memberSummary" border="0" cellpadding="3" cellspacing="0" summary="Method Summary table, listing methods, and an explanation">
  206. <caption><span id="t0" class="activeTableTab"><span>All Methods</span><span class="tabEnd">&nbsp;</span></span><span id="t1" class="tableTab"><span><a href="javascript:show(1);">Static Methods</a></span><span class="tabEnd">&nbsp;</span></span><span id="t2" class="tableTab"><span><a href="javascript:show(2);">Instance Methods</a></span><span class="tabEnd">&nbsp;</span></span><span id="t4" class="tableTab"><span><a href="javascript:show(8);">Concrete Methods</a></span><span class="tabEnd">&nbsp;</span></span></caption>
  207. <tr>
  208. <th class="colFirst" scope="col">Modifier and Type</th>
  209. <th class="colLast" scope="col">Method and Description</th>
  210. </tr>
  211. <tr id="i0" class="altColor">
  212. <td class="colFirst"><code>static <a href="../../../org/opencv/ml/EM.html" title="class in org.opencv.ml">EM</a></code></td>
  213. <td class="colLast"><code><span class="memberNameLink"><a href="../../../org/opencv/ml/EM.html#Z:Z__fromPtr__-long-">__fromPtr__</a></span>(long&nbsp;addr)</code>&nbsp;</td>
  214. </tr>
  215. <tr id="i1" class="rowColor">
  216. <td class="colFirst"><code>static <a href="../../../org/opencv/ml/EM.html" title="class in org.opencv.ml">EM</a></code></td>
  217. <td class="colLast"><code><span class="memberNameLink"><a href="../../../org/opencv/ml/EM.html#create--">create</a></span>()</code>
  218. <div class="block">Creates empty %EM model.</div>
  219. </td>
  220. </tr>
  221. <tr id="i2" class="altColor">
  222. <td class="colFirst"><code>int</code></td>
  223. <td class="colLast"><code><span class="memberNameLink"><a href="../../../org/opencv/ml/EM.html#getClustersNumber--">getClustersNumber</a></span>()</code>
  224. <div class="block">SEE: setClustersNumber</div>
  225. </td>
  226. </tr>
  227. <tr id="i3" class="rowColor">
  228. <td class="colFirst"><code>int</code></td>
  229. <td class="colLast"><code><span class="memberNameLink"><a href="../../../org/opencv/ml/EM.html#getCovarianceMatrixType--">getCovarianceMatrixType</a></span>()</code>
  230. <div class="block">SEE: setCovarianceMatrixType</div>
  231. </td>
  232. </tr>
  233. <tr id="i4" class="altColor">
  234. <td class="colFirst"><code>void</code></td>
  235. <td class="colLast"><code><span class="memberNameLink"><a href="../../../org/opencv/ml/EM.html#getCovs-java.util.List-">getCovs</a></span>(java.util.List&lt;<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&gt;&nbsp;covs)</code>
  236. <div class="block">Returns covariation matrices
  237. Returns vector of covariation matrices.</div>
  238. </td>
  239. </tr>
  240. <tr id="i5" class="rowColor">
  241. <td class="colFirst"><code><a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a></code></td>
  242. <td class="colLast"><code><span class="memberNameLink"><a href="../../../org/opencv/ml/EM.html#getMeans--">getMeans</a></span>()</code>
  243. <div class="block">Returns the cluster centers (means of the Gaussian mixture)
  244. Returns matrix with the number of rows equal to the number of mixtures and number of columns
  245. equal to the space dimensionality.</div>
  246. </td>
  247. </tr>
  248. <tr id="i6" class="altColor">
  249. <td class="colFirst"><code><a href="../../../org/opencv/core/TermCriteria.html" title="class in org.opencv.core">TermCriteria</a></code></td>
  250. <td class="colLast"><code><span class="memberNameLink"><a href="../../../org/opencv/ml/EM.html#getTermCriteria--">getTermCriteria</a></span>()</code>
  251. <div class="block">SEE: setTermCriteria</div>
  252. </td>
  253. </tr>
  254. <tr id="i7" class="rowColor">
  255. <td class="colFirst"><code><a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a></code></td>
  256. <td class="colLast"><code><span class="memberNameLink"><a href="../../../org/opencv/ml/EM.html#getWeights--">getWeights</a></span>()</code>
  257. <div class="block">Returns weights of the mixtures
  258. Returns vector with the number of elements equal to the number of mixtures.</div>
  259. </td>
  260. </tr>
  261. <tr id="i8" class="altColor">
  262. <td class="colFirst"><code>static <a href="../../../org/opencv/ml/EM.html" title="class in org.opencv.ml">EM</a></code></td>
  263. <td class="colLast"><code><span class="memberNameLink"><a href="../../../org/opencv/ml/EM.html#load-java.lang.String-">load</a></span>(java.lang.String&nbsp;filepath)</code>
  264. <div class="block">Loads and creates a serialized EM from a file
  265. Use EM::save to serialize and store an EM to disk.</div>
  266. </td>
  267. </tr>
  268. <tr id="i9" class="rowColor">
  269. <td class="colFirst"><code>static <a href="../../../org/opencv/ml/EM.html" title="class in org.opencv.ml">EM</a></code></td>
  270. <td class="colLast"><code><span class="memberNameLink"><a href="../../../org/opencv/ml/EM.html#load-java.lang.String-java.lang.String-">load</a></span>(java.lang.String&nbsp;filepath,
  271. java.lang.String&nbsp;nodeName)</code>
  272. <div class="block">Loads and creates a serialized EM from a file
  273. Use EM::save to serialize and store an EM to disk.</div>
  274. </td>
  275. </tr>
  276. <tr id="i10" class="altColor">
  277. <td class="colFirst"><code>float</code></td>
  278. <td class="colLast"><code><span class="memberNameLink"><a href="../../../org/opencv/ml/EM.html#predict-org.opencv.core.Mat-">predict</a></span>(<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;samples)</code>
  279. <div class="block">Returns posterior probabilities for the provided samples</div>
  280. </td>
  281. </tr>
  282. <tr id="i11" class="rowColor">
  283. <td class="colFirst"><code>float</code></td>
  284. <td class="colLast"><code><span class="memberNameLink"><a href="../../../org/opencv/ml/EM.html#predict-org.opencv.core.Mat-org.opencv.core.Mat-">predict</a></span>(<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;samples,
  285. <a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;results)</code>
  286. <div class="block">Returns posterior probabilities for the provided samples</div>
  287. </td>
  288. </tr>
  289. <tr id="i12" class="altColor">
  290. <td class="colFirst"><code>float</code></td>
  291. <td class="colLast"><code><span class="memberNameLink"><a href="../../../org/opencv/ml/EM.html#predict-org.opencv.core.Mat-org.opencv.core.Mat-int-">predict</a></span>(<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;samples,
  292. <a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;results,
  293. int&nbsp;flags)</code>
  294. <div class="block">Returns posterior probabilities for the provided samples</div>
  295. </td>
  296. </tr>
  297. <tr id="i13" class="rowColor">
  298. <td class="colFirst"><code>double[]</code></td>
  299. <td class="colLast"><code><span class="memberNameLink"><a href="../../../org/opencv/ml/EM.html#predict2-org.opencv.core.Mat-org.opencv.core.Mat-">predict2</a></span>(<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;sample,
  300. <a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;probs)</code>
  301. <div class="block">Returns a likelihood logarithm value and an index of the most probable mixture component
  302. for the given sample.</div>
  303. </td>
  304. </tr>
  305. <tr id="i14" class="altColor">
  306. <td class="colFirst"><code>void</code></td>
  307. <td class="colLast"><code><span class="memberNameLink"><a href="../../../org/opencv/ml/EM.html#setClustersNumber-int-">setClustersNumber</a></span>(int&nbsp;val)</code>
  308. <div class="block">getClustersNumber SEE: getClustersNumber</div>
  309. </td>
  310. </tr>
  311. <tr id="i15" class="rowColor">
  312. <td class="colFirst"><code>void</code></td>
  313. <td class="colLast"><code><span class="memberNameLink"><a href="../../../org/opencv/ml/EM.html#setCovarianceMatrixType-int-">setCovarianceMatrixType</a></span>(int&nbsp;val)</code>
  314. <div class="block">getCovarianceMatrixType SEE: getCovarianceMatrixType</div>
  315. </td>
  316. </tr>
  317. <tr id="i16" class="altColor">
  318. <td class="colFirst"><code>void</code></td>
  319. <td class="colLast"><code><span class="memberNameLink"><a href="../../../org/opencv/ml/EM.html#setTermCriteria-org.opencv.core.TermCriteria-">setTermCriteria</a></span>(<a href="../../../org/opencv/core/TermCriteria.html" title="class in org.opencv.core">TermCriteria</a>&nbsp;val)</code>
  320. <div class="block">getTermCriteria SEE: getTermCriteria</div>
  321. </td>
  322. </tr>
  323. <tr id="i17" class="rowColor">
  324. <td class="colFirst"><code>boolean</code></td>
  325. <td class="colLast"><code><span class="memberNameLink"><a href="../../../org/opencv/ml/EM.html#trainE-org.opencv.core.Mat-org.opencv.core.Mat-">trainE</a></span>(<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;samples,
  326. <a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;means0)</code>
  327. <div class="block">Estimate the Gaussian mixture parameters from a samples set.</div>
  328. </td>
  329. </tr>
  330. <tr id="i18" class="altColor">
  331. <td class="colFirst"><code>boolean</code></td>
  332. <td class="colLast"><code><span class="memberNameLink"><a href="../../../org/opencv/ml/EM.html#trainE-org.opencv.core.Mat-org.opencv.core.Mat-org.opencv.core.Mat-">trainE</a></span>(<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;samples,
  333. <a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;means0,
  334. <a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;covs0)</code>
  335. <div class="block">Estimate the Gaussian mixture parameters from a samples set.</div>
  336. </td>
  337. </tr>
  338. <tr id="i19" class="rowColor">
  339. <td class="colFirst"><code>boolean</code></td>
  340. <td class="colLast"><code><span class="memberNameLink"><a href="../../../org/opencv/ml/EM.html#trainE-org.opencv.core.Mat-org.opencv.core.Mat-org.opencv.core.Mat-org.opencv.core.Mat-">trainE</a></span>(<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;samples,
  341. <a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;means0,
  342. <a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;covs0,
  343. <a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;weights0)</code>
  344. <div class="block">Estimate the Gaussian mixture parameters from a samples set.</div>
  345. </td>
  346. </tr>
  347. <tr id="i20" class="altColor">
  348. <td class="colFirst"><code>boolean</code></td>
  349. <td class="colLast"><code><span class="memberNameLink"><a href="../../../org/opencv/ml/EM.html#trainE-org.opencv.core.Mat-org.opencv.core.Mat-org.opencv.core.Mat-org.opencv.core.Mat-org.opencv.core.Mat-">trainE</a></span>(<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;samples,
  350. <a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;means0,
  351. <a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;covs0,
  352. <a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;weights0,
  353. <a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;logLikelihoods)</code>
  354. <div class="block">Estimate the Gaussian mixture parameters from a samples set.</div>
  355. </td>
  356. </tr>
  357. <tr id="i21" class="rowColor">
  358. <td class="colFirst"><code>boolean</code></td>
  359. <td class="colLast"><code><span class="memberNameLink"><a href="../../../org/opencv/ml/EM.html#trainE-org.opencv.core.Mat-org.opencv.core.Mat-org.opencv.core.Mat-org.opencv.core.Mat-org.opencv.core.Mat-org.opencv.core.Mat-">trainE</a></span>(<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;samples,
  360. <a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;means0,
  361. <a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;covs0,
  362. <a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;weights0,
  363. <a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;logLikelihoods,
  364. <a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;labels)</code>
  365. <div class="block">Estimate the Gaussian mixture parameters from a samples set.</div>
  366. </td>
  367. </tr>
  368. <tr id="i22" class="altColor">
  369. <td class="colFirst"><code>boolean</code></td>
  370. <td class="colLast"><code><span class="memberNameLink"><a href="../../../org/opencv/ml/EM.html#trainE-org.opencv.core.Mat-org.opencv.core.Mat-org.opencv.core.Mat-org.opencv.core.Mat-org.opencv.core.Mat-org.opencv.core.Mat-org.opencv.core.Mat-">trainE</a></span>(<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;samples,
  371. <a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;means0,
  372. <a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;covs0,
  373. <a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;weights0,
  374. <a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;logLikelihoods,
  375. <a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;labels,
  376. <a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;probs)</code>
  377. <div class="block">Estimate the Gaussian mixture parameters from a samples set.</div>
  378. </td>
  379. </tr>
  380. <tr id="i23" class="rowColor">
  381. <td class="colFirst"><code>boolean</code></td>
  382. <td class="colLast"><code><span class="memberNameLink"><a href="../../../org/opencv/ml/EM.html#trainEM-org.opencv.core.Mat-">trainEM</a></span>(<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;samples)</code>
  383. <div class="block">Estimate the Gaussian mixture parameters from a samples set.</div>
  384. </td>
  385. </tr>
  386. <tr id="i24" class="altColor">
  387. <td class="colFirst"><code>boolean</code></td>
  388. <td class="colLast"><code><span class="memberNameLink"><a href="../../../org/opencv/ml/EM.html#trainEM-org.opencv.core.Mat-org.opencv.core.Mat-">trainEM</a></span>(<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;samples,
  389. <a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;logLikelihoods)</code>
  390. <div class="block">Estimate the Gaussian mixture parameters from a samples set.</div>
  391. </td>
  392. </tr>
  393. <tr id="i25" class="rowColor">
  394. <td class="colFirst"><code>boolean</code></td>
  395. <td class="colLast"><code><span class="memberNameLink"><a href="../../../org/opencv/ml/EM.html#trainEM-org.opencv.core.Mat-org.opencv.core.Mat-org.opencv.core.Mat-">trainEM</a></span>(<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;samples,
  396. <a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;logLikelihoods,
  397. <a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;labels)</code>
  398. <div class="block">Estimate the Gaussian mixture parameters from a samples set.</div>
  399. </td>
  400. </tr>
  401. <tr id="i26" class="altColor">
  402. <td class="colFirst"><code>boolean</code></td>
  403. <td class="colLast"><code><span class="memberNameLink"><a href="../../../org/opencv/ml/EM.html#trainEM-org.opencv.core.Mat-org.opencv.core.Mat-org.opencv.core.Mat-org.opencv.core.Mat-">trainEM</a></span>(<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;samples,
  404. <a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;logLikelihoods,
  405. <a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;labels,
  406. <a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;probs)</code>
  407. <div class="block">Estimate the Gaussian mixture parameters from a samples set.</div>
  408. </td>
  409. </tr>
  410. <tr id="i27" class="rowColor">
  411. <td class="colFirst"><code>boolean</code></td>
  412. <td class="colLast"><code><span class="memberNameLink"><a href="../../../org/opencv/ml/EM.html#trainM-org.opencv.core.Mat-org.opencv.core.Mat-">trainM</a></span>(<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;samples,
  413. <a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;probs0)</code>
  414. <div class="block">Estimate the Gaussian mixture parameters from a samples set.</div>
  415. </td>
  416. </tr>
  417. <tr id="i28" class="altColor">
  418. <td class="colFirst"><code>boolean</code></td>
  419. <td class="colLast"><code><span class="memberNameLink"><a href="../../../org/opencv/ml/EM.html#trainM-org.opencv.core.Mat-org.opencv.core.Mat-org.opencv.core.Mat-">trainM</a></span>(<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;samples,
  420. <a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;probs0,
  421. <a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;logLikelihoods)</code>
  422. <div class="block">Estimate the Gaussian mixture parameters from a samples set.</div>
  423. </td>
  424. </tr>
  425. <tr id="i29" class="rowColor">
  426. <td class="colFirst"><code>boolean</code></td>
  427. <td class="colLast"><code><span class="memberNameLink"><a href="../../../org/opencv/ml/EM.html#trainM-org.opencv.core.Mat-org.opencv.core.Mat-org.opencv.core.Mat-org.opencv.core.Mat-">trainM</a></span>(<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;samples,
  428. <a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;probs0,
  429. <a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;logLikelihoods,
  430. <a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;labels)</code>
  431. <div class="block">Estimate the Gaussian mixture parameters from a samples set.</div>
  432. </td>
  433. </tr>
  434. <tr id="i30" class="altColor">
  435. <td class="colFirst"><code>boolean</code></td>
  436. <td class="colLast"><code><span class="memberNameLink"><a href="../../../org/opencv/ml/EM.html#trainM-org.opencv.core.Mat-org.opencv.core.Mat-org.opencv.core.Mat-org.opencv.core.Mat-org.opencv.core.Mat-">trainM</a></span>(<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;samples,
  437. <a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;probs0,
  438. <a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;logLikelihoods,
  439. <a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;labels,
  440. <a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;probs)</code>
  441. <div class="block">Estimate the Gaussian mixture parameters from a samples set.</div>
  442. </td>
  443. </tr>
  444. </table>
  445. <ul class="blockList">
  446. <li class="blockList"><a name="methods.inherited.from.class.org.opencv.ml.StatModel">
  447. <!-- -->
  448. </a>
  449. <h3>Methods inherited from class&nbsp;org.opencv.ml.<a href="../../../org/opencv/ml/StatModel.html" title="class in org.opencv.ml">StatModel</a></h3>
  450. <code><a href="../../../org/opencv/ml/StatModel.html#calcError-org.opencv.ml.TrainData-boolean-org.opencv.core.Mat-">calcError</a>, <a href="../../../org/opencv/ml/StatModel.html#empty--">empty</a>, <a href="../../../org/opencv/ml/StatModel.html#getVarCount--">getVarCount</a>, <a href="../../../org/opencv/ml/StatModel.html#isClassifier--">isClassifier</a>, <a href="../../../org/opencv/ml/StatModel.html#isTrained--">isTrained</a>, <a href="../../../org/opencv/ml/StatModel.html#train-org.opencv.core.Mat-int-org.opencv.core.Mat-">train</a>, <a href="../../../org/opencv/ml/StatModel.html#train-org.opencv.ml.TrainData-">train</a>, <a href="../../../org/opencv/ml/StatModel.html#train-org.opencv.ml.TrainData-int-">train</a></code></li>
  451. </ul>
  452. <ul class="blockList">
  453. <li class="blockList"><a name="methods.inherited.from.class.org.opencv.core.Algorithm">
  454. <!-- -->
  455. </a>
  456. <h3>Methods inherited from class&nbsp;org.opencv.core.<a href="../../../org/opencv/core/Algorithm.html" title="class in org.opencv.core">Algorithm</a></h3>
  457. <code><a href="../../../org/opencv/core/Algorithm.html#clear--">clear</a>, <a href="../../../org/opencv/core/Algorithm.html#getDefaultName--">getDefaultName</a>, <a href="../../../org/opencv/core/Algorithm.html#getNativeObjAddr--">getNativeObjAddr</a>, <a href="../../../org/opencv/core/Algorithm.html#save-java.lang.String-">save</a></code></li>
  458. </ul>
  459. <ul class="blockList">
  460. <li class="blockList"><a name="methods.inherited.from.class.java.lang.Object">
  461. <!-- -->
  462. </a>
  463. <h3>Methods inherited from class&nbsp;java.lang.Object</h3>
  464. <code>equals, getClass, hashCode, notify, notifyAll, toString, wait, wait, wait</code></li>
  465. </ul>
  466. </li>
  467. </ul>
  468. </li>
  469. </ul>
  470. </div>
  471. <div class="details">
  472. <ul class="blockList">
  473. <li class="blockList">
  474. <!-- ============ FIELD DETAIL =========== -->
  475. <ul class="blockList">
  476. <li class="blockList"><a name="field.detail">
  477. <!-- -->
  478. </a>
  479. <h3>Field Detail</h3>
  480. <a name="COV_MAT_DEFAULT">
  481. <!-- -->
  482. </a>
  483. <ul class="blockList">
  484. <li class="blockList">
  485. <h4>COV_MAT_DEFAULT</h4>
  486. <pre>public static final&nbsp;int COV_MAT_DEFAULT</pre>
  487. <dl>
  488. <dt><span class="seeLabel">See Also:</span></dt>
  489. <dd><a href="../../../constant-values.html#org.opencv.ml.EM.COV_MAT_DEFAULT">Constant Field Values</a></dd>
  490. </dl>
  491. </li>
  492. </ul>
  493. <a name="COV_MAT_DIAGONAL">
  494. <!-- -->
  495. </a>
  496. <ul class="blockList">
  497. <li class="blockList">
  498. <h4>COV_MAT_DIAGONAL</h4>
  499. <pre>public static final&nbsp;int COV_MAT_DIAGONAL</pre>
  500. <dl>
  501. <dt><span class="seeLabel">See Also:</span></dt>
  502. <dd><a href="../../../constant-values.html#org.opencv.ml.EM.COV_MAT_DIAGONAL">Constant Field Values</a></dd>
  503. </dl>
  504. </li>
  505. </ul>
  506. <a name="COV_MAT_GENERIC">
  507. <!-- -->
  508. </a>
  509. <ul class="blockList">
  510. <li class="blockList">
  511. <h4>COV_MAT_GENERIC</h4>
  512. <pre>public static final&nbsp;int COV_MAT_GENERIC</pre>
  513. <dl>
  514. <dt><span class="seeLabel">See Also:</span></dt>
  515. <dd><a href="../../../constant-values.html#org.opencv.ml.EM.COV_MAT_GENERIC">Constant Field Values</a></dd>
  516. </dl>
  517. </li>
  518. </ul>
  519. <a name="COV_MAT_SPHERICAL">
  520. <!-- -->
  521. </a>
  522. <ul class="blockList">
  523. <li class="blockList">
  524. <h4>COV_MAT_SPHERICAL</h4>
  525. <pre>public static final&nbsp;int COV_MAT_SPHERICAL</pre>
  526. <dl>
  527. <dt><span class="seeLabel">See Also:</span></dt>
  528. <dd><a href="../../../constant-values.html#org.opencv.ml.EM.COV_MAT_SPHERICAL">Constant Field Values</a></dd>
  529. </dl>
  530. </li>
  531. </ul>
  532. <a name="DEFAULT_MAX_ITERS">
  533. <!-- -->
  534. </a>
  535. <ul class="blockList">
  536. <li class="blockList">
  537. <h4>DEFAULT_MAX_ITERS</h4>
  538. <pre>public static final&nbsp;int DEFAULT_MAX_ITERS</pre>
  539. <dl>
  540. <dt><span class="seeLabel">See Also:</span></dt>
  541. <dd><a href="../../../constant-values.html#org.opencv.ml.EM.DEFAULT_MAX_ITERS">Constant Field Values</a></dd>
  542. </dl>
  543. </li>
  544. </ul>
  545. <a name="DEFAULT_NCLUSTERS">
  546. <!-- -->
  547. </a>
  548. <ul class="blockList">
  549. <li class="blockList">
  550. <h4>DEFAULT_NCLUSTERS</h4>
  551. <pre>public static final&nbsp;int DEFAULT_NCLUSTERS</pre>
  552. <dl>
  553. <dt><span class="seeLabel">See Also:</span></dt>
  554. <dd><a href="../../../constant-values.html#org.opencv.ml.EM.DEFAULT_NCLUSTERS">Constant Field Values</a></dd>
  555. </dl>
  556. </li>
  557. </ul>
  558. <a name="START_AUTO_STEP">
  559. <!-- -->
  560. </a>
  561. <ul class="blockList">
  562. <li class="blockList">
  563. <h4>START_AUTO_STEP</h4>
  564. <pre>public static final&nbsp;int START_AUTO_STEP</pre>
  565. <dl>
  566. <dt><span class="seeLabel">See Also:</span></dt>
  567. <dd><a href="../../../constant-values.html#org.opencv.ml.EM.START_AUTO_STEP">Constant Field Values</a></dd>
  568. </dl>
  569. </li>
  570. </ul>
  571. <a name="START_E_STEP">
  572. <!-- -->
  573. </a>
  574. <ul class="blockList">
  575. <li class="blockList">
  576. <h4>START_E_STEP</h4>
  577. <pre>public static final&nbsp;int START_E_STEP</pre>
  578. <dl>
  579. <dt><span class="seeLabel">See Also:</span></dt>
  580. <dd><a href="../../../constant-values.html#org.opencv.ml.EM.START_E_STEP">Constant Field Values</a></dd>
  581. </dl>
  582. </li>
  583. </ul>
  584. <a name="START_M_STEP">
  585. <!-- -->
  586. </a>
  587. <ul class="blockListLast">
  588. <li class="blockList">
  589. <h4>START_M_STEP</h4>
  590. <pre>public static final&nbsp;int START_M_STEP</pre>
  591. <dl>
  592. <dt><span class="seeLabel">See Also:</span></dt>
  593. <dd><a href="../../../constant-values.html#org.opencv.ml.EM.START_M_STEP">Constant Field Values</a></dd>
  594. </dl>
  595. </li>
  596. </ul>
  597. </li>
  598. </ul>
  599. <!-- ============ METHOD DETAIL ========== -->
  600. <ul class="blockList">
  601. <li class="blockList"><a name="method.detail">
  602. <!-- -->
  603. </a>
  604. <h3>Method Detail</h3>
  605. <a name="Z:Z__fromPtr__-long-">
  606. <!-- -->
  607. </a>
  608. <ul class="blockList">
  609. <li class="blockList">
  610. <h4>__fromPtr__</h4>
  611. <pre>public static&nbsp;<a href="../../../org/opencv/ml/EM.html" title="class in org.opencv.ml">EM</a>&nbsp;__fromPtr__(long&nbsp;addr)</pre>
  612. </li>
  613. </ul>
  614. <a name="create--">
  615. <!-- -->
  616. </a>
  617. <ul class="blockList">
  618. <li class="blockList">
  619. <h4>create</h4>
  620. <pre>public static&nbsp;<a href="../../../org/opencv/ml/EM.html" title="class in org.opencv.ml">EM</a>&nbsp;create()</pre>
  621. <div class="block">Creates empty %EM model.
  622. The model should be trained then using StatModel::train(traindata, flags) method. Alternatively, you
  623. can use one of the EM::train\* methods or load it from file using Algorithm::load&lt;EM&gt;(filename).</div>
  624. <dl>
  625. <dt><span class="returnLabel">Returns:</span></dt>
  626. <dd>automatically generated</dd>
  627. </dl>
  628. </li>
  629. </ul>
  630. <a name="getClustersNumber--">
  631. <!-- -->
  632. </a>
  633. <ul class="blockList">
  634. <li class="blockList">
  635. <h4>getClustersNumber</h4>
  636. <pre>public&nbsp;int&nbsp;getClustersNumber()</pre>
  637. <div class="block">SEE: setClustersNumber</div>
  638. <dl>
  639. <dt><span class="returnLabel">Returns:</span></dt>
  640. <dd>automatically generated</dd>
  641. </dl>
  642. </li>
  643. </ul>
  644. <a name="getCovarianceMatrixType--">
  645. <!-- -->
  646. </a>
  647. <ul class="blockList">
  648. <li class="blockList">
  649. <h4>getCovarianceMatrixType</h4>
  650. <pre>public&nbsp;int&nbsp;getCovarianceMatrixType()</pre>
  651. <div class="block">SEE: setCovarianceMatrixType</div>
  652. <dl>
  653. <dt><span class="returnLabel">Returns:</span></dt>
  654. <dd>automatically generated</dd>
  655. </dl>
  656. </li>
  657. </ul>
  658. <a name="getCovs-java.util.List-">
  659. <!-- -->
  660. </a>
  661. <ul class="blockList">
  662. <li class="blockList">
  663. <h4>getCovs</h4>
  664. <pre>public&nbsp;void&nbsp;getCovs(java.util.List&lt;<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&gt;&nbsp;covs)</pre>
  665. <div class="block">Returns covariation matrices
  666. Returns vector of covariation matrices. Number of matrices is the number of gaussian mixtures,
  667. each matrix is a square floating-point matrix NxN, where N is the space dimensionality.</div>
  668. <dl>
  669. <dt><span class="paramLabel">Parameters:</span></dt>
  670. <dd><code>covs</code> - automatically generated</dd>
  671. </dl>
  672. </li>
  673. </ul>
  674. <a name="getMeans--">
  675. <!-- -->
  676. </a>
  677. <ul class="blockList">
  678. <li class="blockList">
  679. <h4>getMeans</h4>
  680. <pre>public&nbsp;<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;getMeans()</pre>
  681. <div class="block">Returns the cluster centers (means of the Gaussian mixture)
  682. Returns matrix with the number of rows equal to the number of mixtures and number of columns
  683. equal to the space dimensionality.</div>
  684. <dl>
  685. <dt><span class="returnLabel">Returns:</span></dt>
  686. <dd>automatically generated</dd>
  687. </dl>
  688. </li>
  689. </ul>
  690. <a name="getTermCriteria--">
  691. <!-- -->
  692. </a>
  693. <ul class="blockList">
  694. <li class="blockList">
  695. <h4>getTermCriteria</h4>
  696. <pre>public&nbsp;<a href="../../../org/opencv/core/TermCriteria.html" title="class in org.opencv.core">TermCriteria</a>&nbsp;getTermCriteria()</pre>
  697. <div class="block">SEE: setTermCriteria</div>
  698. <dl>
  699. <dt><span class="returnLabel">Returns:</span></dt>
  700. <dd>automatically generated</dd>
  701. </dl>
  702. </li>
  703. </ul>
  704. <a name="getWeights--">
  705. <!-- -->
  706. </a>
  707. <ul class="blockList">
  708. <li class="blockList">
  709. <h4>getWeights</h4>
  710. <pre>public&nbsp;<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;getWeights()</pre>
  711. <div class="block">Returns weights of the mixtures
  712. Returns vector with the number of elements equal to the number of mixtures.</div>
  713. <dl>
  714. <dt><span class="returnLabel">Returns:</span></dt>
  715. <dd>automatically generated</dd>
  716. </dl>
  717. </li>
  718. </ul>
  719. <a name="load-java.lang.String-">
  720. <!-- -->
  721. </a>
  722. <ul class="blockList">
  723. <li class="blockList">
  724. <h4>load</h4>
  725. <pre>public static&nbsp;<a href="../../../org/opencv/ml/EM.html" title="class in org.opencv.ml">EM</a>&nbsp;load(java.lang.String&nbsp;filepath)</pre>
  726. <div class="block">Loads and creates a serialized EM from a file
  727. Use EM::save to serialize and store an EM to disk.
  728. Load the EM from this file again, by calling this function with the path to the file.
  729. Optionally specify the node for the file containing the classifier</div>
  730. <dl>
  731. <dt><span class="paramLabel">Parameters:</span></dt>
  732. <dd><code>filepath</code> - path to serialized EM</dd>
  733. <dt><span class="returnLabel">Returns:</span></dt>
  734. <dd>automatically generated</dd>
  735. </dl>
  736. </li>
  737. </ul>
  738. <a name="load-java.lang.String-java.lang.String-">
  739. <!-- -->
  740. </a>
  741. <ul class="blockList">
  742. <li class="blockList">
  743. <h4>load</h4>
  744. <pre>public static&nbsp;<a href="../../../org/opencv/ml/EM.html" title="class in org.opencv.ml">EM</a>&nbsp;load(java.lang.String&nbsp;filepath,
  745. java.lang.String&nbsp;nodeName)</pre>
  746. <div class="block">Loads and creates a serialized EM from a file
  747. Use EM::save to serialize and store an EM to disk.
  748. Load the EM from this file again, by calling this function with the path to the file.
  749. Optionally specify the node for the file containing the classifier</div>
  750. <dl>
  751. <dt><span class="paramLabel">Parameters:</span></dt>
  752. <dd><code>filepath</code> - path to serialized EM</dd>
  753. <dd><code>nodeName</code> - name of node containing the classifier</dd>
  754. <dt><span class="returnLabel">Returns:</span></dt>
  755. <dd>automatically generated</dd>
  756. </dl>
  757. </li>
  758. </ul>
  759. <a name="predict-org.opencv.core.Mat-">
  760. <!-- -->
  761. </a>
  762. <ul class="blockList">
  763. <li class="blockList">
  764. <h4>predict</h4>
  765. <pre>public&nbsp;float&nbsp;predict(<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;samples)</pre>
  766. <div class="block">Returns posterior probabilities for the provided samples</div>
  767. <dl>
  768. <dt><span class="overrideSpecifyLabel">Overrides:</span></dt>
  769. <dd><code><a href="../../../org/opencv/ml/StatModel.html#predict-org.opencv.core.Mat-">predict</a></code>&nbsp;in class&nbsp;<code><a href="../../../org/opencv/ml/StatModel.html" title="class in org.opencv.ml">StatModel</a></code></dd>
  770. <dt><span class="paramLabel">Parameters:</span></dt>
  771. <dd><code>samples</code> - The input samples, floating-point matrix
  772. posterior probabilities for each sample from the input</dd>
  773. <dt><span class="returnLabel">Returns:</span></dt>
  774. <dd>automatically generated</dd>
  775. </dl>
  776. </li>
  777. </ul>
  778. <a name="predict-org.opencv.core.Mat-org.opencv.core.Mat-">
  779. <!-- -->
  780. </a>
  781. <ul class="blockList">
  782. <li class="blockList">
  783. <h4>predict</h4>
  784. <pre>public&nbsp;float&nbsp;predict(<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;samples,
  785. <a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;results)</pre>
  786. <div class="block">Returns posterior probabilities for the provided samples</div>
  787. <dl>
  788. <dt><span class="overrideSpecifyLabel">Overrides:</span></dt>
  789. <dd><code><a href="../../../org/opencv/ml/StatModel.html#predict-org.opencv.core.Mat-org.opencv.core.Mat-">predict</a></code>&nbsp;in class&nbsp;<code><a href="../../../org/opencv/ml/StatModel.html" title="class in org.opencv.ml">StatModel</a></code></dd>
  790. <dt><span class="paramLabel">Parameters:</span></dt>
  791. <dd><code>samples</code> - The input samples, floating-point matrix</dd>
  792. <dd><code>results</code> - The optional output \( nSamples \times nClusters\) matrix of results. It contains
  793. posterior probabilities for each sample from the input</dd>
  794. <dt><span class="returnLabel">Returns:</span></dt>
  795. <dd>automatically generated</dd>
  796. </dl>
  797. </li>
  798. </ul>
  799. <a name="predict-org.opencv.core.Mat-org.opencv.core.Mat-int-">
  800. <!-- -->
  801. </a>
  802. <ul class="blockList">
  803. <li class="blockList">
  804. <h4>predict</h4>
  805. <pre>public&nbsp;float&nbsp;predict(<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;samples,
  806. <a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;results,
  807. int&nbsp;flags)</pre>
  808. <div class="block">Returns posterior probabilities for the provided samples</div>
  809. <dl>
  810. <dt><span class="overrideSpecifyLabel">Overrides:</span></dt>
  811. <dd><code><a href="../../../org/opencv/ml/StatModel.html#predict-org.opencv.core.Mat-org.opencv.core.Mat-int-">predict</a></code>&nbsp;in class&nbsp;<code><a href="../../../org/opencv/ml/StatModel.html" title="class in org.opencv.ml">StatModel</a></code></dd>
  812. <dt><span class="paramLabel">Parameters:</span></dt>
  813. <dd><code>samples</code> - The input samples, floating-point matrix</dd>
  814. <dd><code>results</code> - The optional output \( nSamples \times nClusters\) matrix of results. It contains
  815. posterior probabilities for each sample from the input</dd>
  816. <dd><code>flags</code> - This parameter will be ignored</dd>
  817. <dt><span class="returnLabel">Returns:</span></dt>
  818. <dd>automatically generated</dd>
  819. </dl>
  820. </li>
  821. </ul>
  822. <a name="predict2-org.opencv.core.Mat-org.opencv.core.Mat-">
  823. <!-- -->
  824. </a>
  825. <ul class="blockList">
  826. <li class="blockList">
  827. <h4>predict2</h4>
  828. <pre>public&nbsp;double[]&nbsp;predict2(<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;sample,
  829. <a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;probs)</pre>
  830. <div class="block">Returns a likelihood logarithm value and an index of the most probable mixture component
  831. for the given sample.</div>
  832. <dl>
  833. <dt><span class="paramLabel">Parameters:</span></dt>
  834. <dd><code>sample</code> - A sample for classification. It should be a one-channel matrix of
  835. \(1 \times dims\) or \(dims \times 1\) size.</dd>
  836. <dd><code>probs</code> - Optional output matrix that contains posterior probabilities of each component
  837. given the sample. It has \(1 \times nclusters\) size and CV_64FC1 type.
  838. The method returns a two-element double vector. Zero element is a likelihood logarithm value for
  839. the sample. First element is an index of the most probable mixture component for the given
  840. sample.</dd>
  841. <dt><span class="returnLabel">Returns:</span></dt>
  842. <dd>automatically generated</dd>
  843. </dl>
  844. </li>
  845. </ul>
  846. <a name="setClustersNumber-int-">
  847. <!-- -->
  848. </a>
  849. <ul class="blockList">
  850. <li class="blockList">
  851. <h4>setClustersNumber</h4>
  852. <pre>public&nbsp;void&nbsp;setClustersNumber(int&nbsp;val)</pre>
  853. <div class="block">getClustersNumber SEE: getClustersNumber</div>
  854. <dl>
  855. <dt><span class="paramLabel">Parameters:</span></dt>
  856. <dd><code>val</code> - automatically generated</dd>
  857. </dl>
  858. </li>
  859. </ul>
  860. <a name="setCovarianceMatrixType-int-">
  861. <!-- -->
  862. </a>
  863. <ul class="blockList">
  864. <li class="blockList">
  865. <h4>setCovarianceMatrixType</h4>
  866. <pre>public&nbsp;void&nbsp;setCovarianceMatrixType(int&nbsp;val)</pre>
  867. <div class="block">getCovarianceMatrixType SEE: getCovarianceMatrixType</div>
  868. <dl>
  869. <dt><span class="paramLabel">Parameters:</span></dt>
  870. <dd><code>val</code> - automatically generated</dd>
  871. </dl>
  872. </li>
  873. </ul>
  874. <a name="setTermCriteria-org.opencv.core.TermCriteria-">
  875. <!-- -->
  876. </a>
  877. <ul class="blockList">
  878. <li class="blockList">
  879. <h4>setTermCriteria</h4>
  880. <pre>public&nbsp;void&nbsp;setTermCriteria(<a href="../../../org/opencv/core/TermCriteria.html" title="class in org.opencv.core">TermCriteria</a>&nbsp;val)</pre>
  881. <div class="block">getTermCriteria SEE: getTermCriteria</div>
  882. <dl>
  883. <dt><span class="paramLabel">Parameters:</span></dt>
  884. <dd><code>val</code> - automatically generated</dd>
  885. </dl>
  886. </li>
  887. </ul>
  888. <a name="trainE-org.opencv.core.Mat-org.opencv.core.Mat-">
  889. <!-- -->
  890. </a>
  891. <ul class="blockList">
  892. <li class="blockList">
  893. <h4>trainE</h4>
  894. <pre>public&nbsp;boolean&nbsp;trainE(<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;samples,
  895. <a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;means0)</pre>
  896. <div class="block">Estimate the Gaussian mixture parameters from a samples set.
  897. This variation starts with Expectation step. You need to provide initial means \(a_k\) of
  898. mixture components. Optionally you can pass initial weights \(\pi_k\) and covariance matrices
  899. \(S_k\) of mixture components.</div>
  900. <dl>
  901. <dt><span class="paramLabel">Parameters:</span></dt>
  902. <dd><code>samples</code> - Samples from which the Gaussian mixture model will be estimated. It should be a
  903. one-channel matrix, each row of which is a sample. If the matrix does not have CV_64F type
  904. it will be converted to the inner matrix of such type for the further computing.</dd>
  905. <dd><code>means0</code> - Initial means \(a_k\) of mixture components. It is a one-channel matrix of
  906. \(nclusters \times dims\) size. If the matrix does not have CV_64F type it will be
  907. converted to the inner matrix of such type for the further computing.
  908. covariance matrices is a one-channel matrix of \(dims \times dims\) size. If the matrices
  909. do not have CV_64F type they will be converted to the inner matrices of such type for the
  910. further computing.
  911. floating-point matrix with \(1 \times nclusters\) or \(nclusters \times 1\) size.
  912. each sample. It has \(nsamples \times 1\) size and CV_64FC1 type.
  913. \(\texttt{labels}_i=\texttt{arg max}_k(p_{i,k}), i=1..N\) (indices of the most probable
  914. mixture component for each sample). It has \(nsamples \times 1\) size and CV_32SC1 type.
  915. mixture component given the each sample. It has \(nsamples \times nclusters\) size and
  916. CV_64FC1 type.</dd>
  917. <dt><span class="returnLabel">Returns:</span></dt>
  918. <dd>automatically generated</dd>
  919. </dl>
  920. </li>
  921. </ul>
  922. <a name="trainE-org.opencv.core.Mat-org.opencv.core.Mat-org.opencv.core.Mat-">
  923. <!-- -->
  924. </a>
  925. <ul class="blockList">
  926. <li class="blockList">
  927. <h4>trainE</h4>
  928. <pre>public&nbsp;boolean&nbsp;trainE(<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;samples,
  929. <a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;means0,
  930. <a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;covs0)</pre>
  931. <div class="block">Estimate the Gaussian mixture parameters from a samples set.
  932. This variation starts with Expectation step. You need to provide initial means \(a_k\) of
  933. mixture components. Optionally you can pass initial weights \(\pi_k\) and covariance matrices
  934. \(S_k\) of mixture components.</div>
  935. <dl>
  936. <dt><span class="paramLabel">Parameters:</span></dt>
  937. <dd><code>samples</code> - Samples from which the Gaussian mixture model will be estimated. It should be a
  938. one-channel matrix, each row of which is a sample. If the matrix does not have CV_64F type
  939. it will be converted to the inner matrix of such type for the further computing.</dd>
  940. <dd><code>means0</code> - Initial means \(a_k\) of mixture components. It is a one-channel matrix of
  941. \(nclusters \times dims\) size. If the matrix does not have CV_64F type it will be
  942. converted to the inner matrix of such type for the further computing.</dd>
  943. <dd><code>covs0</code> - The vector of initial covariance matrices \(S_k\) of mixture components. Each of
  944. covariance matrices is a one-channel matrix of \(dims \times dims\) size. If the matrices
  945. do not have CV_64F type they will be converted to the inner matrices of such type for the
  946. further computing.
  947. floating-point matrix with \(1 \times nclusters\) or \(nclusters \times 1\) size.
  948. each sample. It has \(nsamples \times 1\) size and CV_64FC1 type.
  949. \(\texttt{labels}_i=\texttt{arg max}_k(p_{i,k}), i=1..N\) (indices of the most probable
  950. mixture component for each sample). It has \(nsamples \times 1\) size and CV_32SC1 type.
  951. mixture component given the each sample. It has \(nsamples \times nclusters\) size and
  952. CV_64FC1 type.</dd>
  953. <dt><span class="returnLabel">Returns:</span></dt>
  954. <dd>automatically generated</dd>
  955. </dl>
  956. </li>
  957. </ul>
  958. <a name="trainE-org.opencv.core.Mat-org.opencv.core.Mat-org.opencv.core.Mat-org.opencv.core.Mat-">
  959. <!-- -->
  960. </a>
  961. <ul class="blockList">
  962. <li class="blockList">
  963. <h4>trainE</h4>
  964. <pre>public&nbsp;boolean&nbsp;trainE(<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;samples,
  965. <a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;means0,
  966. <a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;covs0,
  967. <a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;weights0)</pre>
  968. <div class="block">Estimate the Gaussian mixture parameters from a samples set.
  969. This variation starts with Expectation step. You need to provide initial means \(a_k\) of
  970. mixture components. Optionally you can pass initial weights \(\pi_k\) and covariance matrices
  971. \(S_k\) of mixture components.</div>
  972. <dl>
  973. <dt><span class="paramLabel">Parameters:</span></dt>
  974. <dd><code>samples</code> - Samples from which the Gaussian mixture model will be estimated. It should be a
  975. one-channel matrix, each row of which is a sample. If the matrix does not have CV_64F type
  976. it will be converted to the inner matrix of such type for the further computing.</dd>
  977. <dd><code>means0</code> - Initial means \(a_k\) of mixture components. It is a one-channel matrix of
  978. \(nclusters \times dims\) size. If the matrix does not have CV_64F type it will be
  979. converted to the inner matrix of such type for the further computing.</dd>
  980. <dd><code>covs0</code> - The vector of initial covariance matrices \(S_k\) of mixture components. Each of
  981. covariance matrices is a one-channel matrix of \(dims \times dims\) size. If the matrices
  982. do not have CV_64F type they will be converted to the inner matrices of such type for the
  983. further computing.</dd>
  984. <dd><code>weights0</code> - Initial weights \(\pi_k\) of mixture components. It should be a one-channel
  985. floating-point matrix with \(1 \times nclusters\) or \(nclusters \times 1\) size.
  986. each sample. It has \(nsamples \times 1\) size and CV_64FC1 type.
  987. \(\texttt{labels}_i=\texttt{arg max}_k(p_{i,k}), i=1..N\) (indices of the most probable
  988. mixture component for each sample). It has \(nsamples \times 1\) size and CV_32SC1 type.
  989. mixture component given the each sample. It has \(nsamples \times nclusters\) size and
  990. CV_64FC1 type.</dd>
  991. <dt><span class="returnLabel">Returns:</span></dt>
  992. <dd>automatically generated</dd>
  993. </dl>
  994. </li>
  995. </ul>
  996. <a name="trainE-org.opencv.core.Mat-org.opencv.core.Mat-org.opencv.core.Mat-org.opencv.core.Mat-org.opencv.core.Mat-">
  997. <!-- -->
  998. </a>
  999. <ul class="blockList">
  1000. <li class="blockList">
  1001. <h4>trainE</h4>
  1002. <pre>public&nbsp;boolean&nbsp;trainE(<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;samples,
  1003. <a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;means0,
  1004. <a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;covs0,
  1005. <a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;weights0,
  1006. <a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;logLikelihoods)</pre>
  1007. <div class="block">Estimate the Gaussian mixture parameters from a samples set.
  1008. This variation starts with Expectation step. You need to provide initial means \(a_k\) of
  1009. mixture components. Optionally you can pass initial weights \(\pi_k\) and covariance matrices
  1010. \(S_k\) of mixture components.</div>
  1011. <dl>
  1012. <dt><span class="paramLabel">Parameters:</span></dt>
  1013. <dd><code>samples</code> - Samples from which the Gaussian mixture model will be estimated. It should be a
  1014. one-channel matrix, each row of which is a sample. If the matrix does not have CV_64F type
  1015. it will be converted to the inner matrix of such type for the further computing.</dd>
  1016. <dd><code>means0</code> - Initial means \(a_k\) of mixture components. It is a one-channel matrix of
  1017. \(nclusters \times dims\) size. If the matrix does not have CV_64F type it will be
  1018. converted to the inner matrix of such type for the further computing.</dd>
  1019. <dd><code>covs0</code> - The vector of initial covariance matrices \(S_k\) of mixture components. Each of
  1020. covariance matrices is a one-channel matrix of \(dims \times dims\) size. If the matrices
  1021. do not have CV_64F type they will be converted to the inner matrices of such type for the
  1022. further computing.</dd>
  1023. <dd><code>weights0</code> - Initial weights \(\pi_k\) of mixture components. It should be a one-channel
  1024. floating-point matrix with \(1 \times nclusters\) or \(nclusters \times 1\) size.</dd>
  1025. <dd><code>logLikelihoods</code> - The optional output matrix that contains a likelihood logarithm value for
  1026. each sample. It has \(nsamples \times 1\) size and CV_64FC1 type.
  1027. \(\texttt{labels}_i=\texttt{arg max}_k(p_{i,k}), i=1..N\) (indices of the most probable
  1028. mixture component for each sample). It has \(nsamples \times 1\) size and CV_32SC1 type.
  1029. mixture component given the each sample. It has \(nsamples \times nclusters\) size and
  1030. CV_64FC1 type.</dd>
  1031. <dt><span class="returnLabel">Returns:</span></dt>
  1032. <dd>automatically generated</dd>
  1033. </dl>
  1034. </li>
  1035. </ul>
  1036. <a name="trainE-org.opencv.core.Mat-org.opencv.core.Mat-org.opencv.core.Mat-org.opencv.core.Mat-org.opencv.core.Mat-org.opencv.core.Mat-">
  1037. <!-- -->
  1038. </a>
  1039. <ul class="blockList">
  1040. <li class="blockList">
  1041. <h4>trainE</h4>
  1042. <pre>public&nbsp;boolean&nbsp;trainE(<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;samples,
  1043. <a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;means0,
  1044. <a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;covs0,
  1045. <a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;weights0,
  1046. <a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;logLikelihoods,
  1047. <a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;labels)</pre>
  1048. <div class="block">Estimate the Gaussian mixture parameters from a samples set.
  1049. This variation starts with Expectation step. You need to provide initial means \(a_k\) of
  1050. mixture components. Optionally you can pass initial weights \(\pi_k\) and covariance matrices
  1051. \(S_k\) of mixture components.</div>
  1052. <dl>
  1053. <dt><span class="paramLabel">Parameters:</span></dt>
  1054. <dd><code>samples</code> - Samples from which the Gaussian mixture model will be estimated. It should be a
  1055. one-channel matrix, each row of which is a sample. If the matrix does not have CV_64F type
  1056. it will be converted to the inner matrix of such type for the further computing.</dd>
  1057. <dd><code>means0</code> - Initial means \(a_k\) of mixture components. It is a one-channel matrix of
  1058. \(nclusters \times dims\) size. If the matrix does not have CV_64F type it will be
  1059. converted to the inner matrix of such type for the further computing.</dd>
  1060. <dd><code>covs0</code> - The vector of initial covariance matrices \(S_k\) of mixture components. Each of
  1061. covariance matrices is a one-channel matrix of \(dims \times dims\) size. If the matrices
  1062. do not have CV_64F type they will be converted to the inner matrices of such type for the
  1063. further computing.</dd>
  1064. <dd><code>weights0</code> - Initial weights \(\pi_k\) of mixture components. It should be a one-channel
  1065. floating-point matrix with \(1 \times nclusters\) or \(nclusters \times 1\) size.</dd>
  1066. <dd><code>logLikelihoods</code> - The optional output matrix that contains a likelihood logarithm value for
  1067. each sample. It has \(nsamples \times 1\) size and CV_64FC1 type.</dd>
  1068. <dd><code>labels</code> - The optional output "class label" for each sample:
  1069. \(\texttt{labels}_i=\texttt{arg max}_k(p_{i,k}), i=1..N\) (indices of the most probable
  1070. mixture component for each sample). It has \(nsamples \times 1\) size and CV_32SC1 type.
  1071. mixture component given the each sample. It has \(nsamples \times nclusters\) size and
  1072. CV_64FC1 type.</dd>
  1073. <dt><span class="returnLabel">Returns:</span></dt>
  1074. <dd>automatically generated</dd>
  1075. </dl>
  1076. </li>
  1077. </ul>
  1078. <a name="trainE-org.opencv.core.Mat-org.opencv.core.Mat-org.opencv.core.Mat-org.opencv.core.Mat-org.opencv.core.Mat-org.opencv.core.Mat-org.opencv.core.Mat-">
  1079. <!-- -->
  1080. </a>
  1081. <ul class="blockList">
  1082. <li class="blockList">
  1083. <h4>trainE</h4>
  1084. <pre>public&nbsp;boolean&nbsp;trainE(<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;samples,
  1085. <a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;means0,
  1086. <a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;covs0,
  1087. <a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;weights0,
  1088. <a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;logLikelihoods,
  1089. <a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;labels,
  1090. <a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;probs)</pre>
  1091. <div class="block">Estimate the Gaussian mixture parameters from a samples set.
  1092. This variation starts with Expectation step. You need to provide initial means \(a_k\) of
  1093. mixture components. Optionally you can pass initial weights \(\pi_k\) and covariance matrices
  1094. \(S_k\) of mixture components.</div>
  1095. <dl>
  1096. <dt><span class="paramLabel">Parameters:</span></dt>
  1097. <dd><code>samples</code> - Samples from which the Gaussian mixture model will be estimated. It should be a
  1098. one-channel matrix, each row of which is a sample. If the matrix does not have CV_64F type
  1099. it will be converted to the inner matrix of such type for the further computing.</dd>
  1100. <dd><code>means0</code> - Initial means \(a_k\) of mixture components. It is a one-channel matrix of
  1101. \(nclusters \times dims\) size. If the matrix does not have CV_64F type it will be
  1102. converted to the inner matrix of such type for the further computing.</dd>
  1103. <dd><code>covs0</code> - The vector of initial covariance matrices \(S_k\) of mixture components. Each of
  1104. covariance matrices is a one-channel matrix of \(dims \times dims\) size. If the matrices
  1105. do not have CV_64F type they will be converted to the inner matrices of such type for the
  1106. further computing.</dd>
  1107. <dd><code>weights0</code> - Initial weights \(\pi_k\) of mixture components. It should be a one-channel
  1108. floating-point matrix with \(1 \times nclusters\) or \(nclusters \times 1\) size.</dd>
  1109. <dd><code>logLikelihoods</code> - The optional output matrix that contains a likelihood logarithm value for
  1110. each sample. It has \(nsamples \times 1\) size and CV_64FC1 type.</dd>
  1111. <dd><code>labels</code> - The optional output "class label" for each sample:
  1112. \(\texttt{labels}_i=\texttt{arg max}_k(p_{i,k}), i=1..N\) (indices of the most probable
  1113. mixture component for each sample). It has \(nsamples \times 1\) size and CV_32SC1 type.</dd>
  1114. <dd><code>probs</code> - The optional output matrix that contains posterior probabilities of each Gaussian
  1115. mixture component given the each sample. It has \(nsamples \times nclusters\) size and
  1116. CV_64FC1 type.</dd>
  1117. <dt><span class="returnLabel">Returns:</span></dt>
  1118. <dd>automatically generated</dd>
  1119. </dl>
  1120. </li>
  1121. </ul>
  1122. <a name="trainEM-org.opencv.core.Mat-">
  1123. <!-- -->
  1124. </a>
  1125. <ul class="blockList">
  1126. <li class="blockList">
  1127. <h4>trainEM</h4>
  1128. <pre>public&nbsp;boolean&nbsp;trainEM(<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;samples)</pre>
  1129. <div class="block">Estimate the Gaussian mixture parameters from a samples set.
  1130. This variation starts with Expectation step. Initial values of the model parameters will be
  1131. estimated by the k-means algorithm.
  1132. Unlike many of the ML models, %EM is an unsupervised learning algorithm and it does not take
  1133. responses (class labels or function values) as input. Instead, it computes the *Maximum
  1134. Likelihood Estimate* of the Gaussian mixture parameters from an input sample set, stores all the
  1135. parameters inside the structure: \(p_{i,k}\) in probs, \(a_k\) in means , \(S_k\) in
  1136. covs[k], \(\pi_k\) in weights , and optionally computes the output "class label" for each
  1137. sample: \(\texttt{labels}_i=\texttt{arg max}_k(p_{i,k}), i=1..N\) (indices of the most
  1138. probable mixture component for each sample).
  1139. The trained model can be used further for prediction, just like any other classifier. The
  1140. trained model is similar to the NormalBayesClassifier.</div>
  1141. <dl>
  1142. <dt><span class="paramLabel">Parameters:</span></dt>
  1143. <dd><code>samples</code> - Samples from which the Gaussian mixture model will be estimated. It should be a
  1144. one-channel matrix, each row of which is a sample. If the matrix does not have CV_64F type
  1145. it will be converted to the inner matrix of such type for the further computing.
  1146. each sample. It has \(nsamples \times 1\) size and CV_64FC1 type.
  1147. \(\texttt{labels}_i=\texttt{arg max}_k(p_{i,k}), i=1..N\) (indices of the most probable
  1148. mixture component for each sample). It has \(nsamples \times 1\) size and CV_32SC1 type.
  1149. mixture component given the each sample. It has \(nsamples \times nclusters\) size and
  1150. CV_64FC1 type.</dd>
  1151. <dt><span class="returnLabel">Returns:</span></dt>
  1152. <dd>automatically generated</dd>
  1153. </dl>
  1154. </li>
  1155. </ul>
  1156. <a name="trainEM-org.opencv.core.Mat-org.opencv.core.Mat-">
  1157. <!-- -->
  1158. </a>
  1159. <ul class="blockList">
  1160. <li class="blockList">
  1161. <h4>trainEM</h4>
  1162. <pre>public&nbsp;boolean&nbsp;trainEM(<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;samples,
  1163. <a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;logLikelihoods)</pre>
  1164. <div class="block">Estimate the Gaussian mixture parameters from a samples set.
  1165. This variation starts with Expectation step. Initial values of the model parameters will be
  1166. estimated by the k-means algorithm.
  1167. Unlike many of the ML models, %EM is an unsupervised learning algorithm and it does not take
  1168. responses (class labels or function values) as input. Instead, it computes the *Maximum
  1169. Likelihood Estimate* of the Gaussian mixture parameters from an input sample set, stores all the
  1170. parameters inside the structure: \(p_{i,k}\) in probs, \(a_k\) in means , \(S_k\) in
  1171. covs[k], \(\pi_k\) in weights , and optionally computes the output "class label" for each
  1172. sample: \(\texttt{labels}_i=\texttt{arg max}_k(p_{i,k}), i=1..N\) (indices of the most
  1173. probable mixture component for each sample).
  1174. The trained model can be used further for prediction, just like any other classifier. The
  1175. trained model is similar to the NormalBayesClassifier.</div>
  1176. <dl>
  1177. <dt><span class="paramLabel">Parameters:</span></dt>
  1178. <dd><code>samples</code> - Samples from which the Gaussian mixture model will be estimated. It should be a
  1179. one-channel matrix, each row of which is a sample. If the matrix does not have CV_64F type
  1180. it will be converted to the inner matrix of such type for the further computing.</dd>
  1181. <dd><code>logLikelihoods</code> - The optional output matrix that contains a likelihood logarithm value for
  1182. each sample. It has \(nsamples \times 1\) size and CV_64FC1 type.
  1183. \(\texttt{labels}_i=\texttt{arg max}_k(p_{i,k}), i=1..N\) (indices of the most probable
  1184. mixture component for each sample). It has \(nsamples \times 1\) size and CV_32SC1 type.
  1185. mixture component given the each sample. It has \(nsamples \times nclusters\) size and
  1186. CV_64FC1 type.</dd>
  1187. <dt><span class="returnLabel">Returns:</span></dt>
  1188. <dd>automatically generated</dd>
  1189. </dl>
  1190. </li>
  1191. </ul>
  1192. <a name="trainEM-org.opencv.core.Mat-org.opencv.core.Mat-org.opencv.core.Mat-">
  1193. <!-- -->
  1194. </a>
  1195. <ul class="blockList">
  1196. <li class="blockList">
  1197. <h4>trainEM</h4>
  1198. <pre>public&nbsp;boolean&nbsp;trainEM(<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;samples,
  1199. <a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;logLikelihoods,
  1200. <a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;labels)</pre>
  1201. <div class="block">Estimate the Gaussian mixture parameters from a samples set.
  1202. This variation starts with Expectation step. Initial values of the model parameters will be
  1203. estimated by the k-means algorithm.
  1204. Unlike many of the ML models, %EM is an unsupervised learning algorithm and it does not take
  1205. responses (class labels or function values) as input. Instead, it computes the *Maximum
  1206. Likelihood Estimate* of the Gaussian mixture parameters from an input sample set, stores all the
  1207. parameters inside the structure: \(p_{i,k}\) in probs, \(a_k\) in means , \(S_k\) in
  1208. covs[k], \(\pi_k\) in weights , and optionally computes the output "class label" for each
  1209. sample: \(\texttt{labels}_i=\texttt{arg max}_k(p_{i,k}), i=1..N\) (indices of the most
  1210. probable mixture component for each sample).
  1211. The trained model can be used further for prediction, just like any other classifier. The
  1212. trained model is similar to the NormalBayesClassifier.</div>
  1213. <dl>
  1214. <dt><span class="paramLabel">Parameters:</span></dt>
  1215. <dd><code>samples</code> - Samples from which the Gaussian mixture model will be estimated. It should be a
  1216. one-channel matrix, each row of which is a sample. If the matrix does not have CV_64F type
  1217. it will be converted to the inner matrix of such type for the further computing.</dd>
  1218. <dd><code>logLikelihoods</code> - The optional output matrix that contains a likelihood logarithm value for
  1219. each sample. It has \(nsamples \times 1\) size and CV_64FC1 type.</dd>
  1220. <dd><code>labels</code> - The optional output "class label" for each sample:
  1221. \(\texttt{labels}_i=\texttt{arg max}_k(p_{i,k}), i=1..N\) (indices of the most probable
  1222. mixture component for each sample). It has \(nsamples \times 1\) size and CV_32SC1 type.
  1223. mixture component given the each sample. It has \(nsamples \times nclusters\) size and
  1224. CV_64FC1 type.</dd>
  1225. <dt><span class="returnLabel">Returns:</span></dt>
  1226. <dd>automatically generated</dd>
  1227. </dl>
  1228. </li>
  1229. </ul>
  1230. <a name="trainEM-org.opencv.core.Mat-org.opencv.core.Mat-org.opencv.core.Mat-org.opencv.core.Mat-">
  1231. <!-- -->
  1232. </a>
  1233. <ul class="blockList">
  1234. <li class="blockList">
  1235. <h4>trainEM</h4>
  1236. <pre>public&nbsp;boolean&nbsp;trainEM(<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;samples,
  1237. <a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;logLikelihoods,
  1238. <a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;labels,
  1239. <a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;probs)</pre>
  1240. <div class="block">Estimate the Gaussian mixture parameters from a samples set.
  1241. This variation starts with Expectation step. Initial values of the model parameters will be
  1242. estimated by the k-means algorithm.
  1243. Unlike many of the ML models, %EM is an unsupervised learning algorithm and it does not take
  1244. responses (class labels or function values) as input. Instead, it computes the *Maximum
  1245. Likelihood Estimate* of the Gaussian mixture parameters from an input sample set, stores all the
  1246. parameters inside the structure: \(p_{i,k}\) in probs, \(a_k\) in means , \(S_k\) in
  1247. covs[k], \(\pi_k\) in weights , and optionally computes the output "class label" for each
  1248. sample: \(\texttt{labels}_i=\texttt{arg max}_k(p_{i,k}), i=1..N\) (indices of the most
  1249. probable mixture component for each sample).
  1250. The trained model can be used further for prediction, just like any other classifier. The
  1251. trained model is similar to the NormalBayesClassifier.</div>
  1252. <dl>
  1253. <dt><span class="paramLabel">Parameters:</span></dt>
  1254. <dd><code>samples</code> - Samples from which the Gaussian mixture model will be estimated. It should be a
  1255. one-channel matrix, each row of which is a sample. If the matrix does not have CV_64F type
  1256. it will be converted to the inner matrix of such type for the further computing.</dd>
  1257. <dd><code>logLikelihoods</code> - The optional output matrix that contains a likelihood logarithm value for
  1258. each sample. It has \(nsamples \times 1\) size and CV_64FC1 type.</dd>
  1259. <dd><code>labels</code> - The optional output "class label" for each sample:
  1260. \(\texttt{labels}_i=\texttt{arg max}_k(p_{i,k}), i=1..N\) (indices of the most probable
  1261. mixture component for each sample). It has \(nsamples \times 1\) size and CV_32SC1 type.</dd>
  1262. <dd><code>probs</code> - The optional output matrix that contains posterior probabilities of each Gaussian
  1263. mixture component given the each sample. It has \(nsamples \times nclusters\) size and
  1264. CV_64FC1 type.</dd>
  1265. <dt><span class="returnLabel">Returns:</span></dt>
  1266. <dd>automatically generated</dd>
  1267. </dl>
  1268. </li>
  1269. </ul>
  1270. <a name="trainM-org.opencv.core.Mat-org.opencv.core.Mat-">
  1271. <!-- -->
  1272. </a>
  1273. <ul class="blockList">
  1274. <li class="blockList">
  1275. <h4>trainM</h4>
  1276. <pre>public&nbsp;boolean&nbsp;trainM(<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;samples,
  1277. <a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;probs0)</pre>
  1278. <div class="block">Estimate the Gaussian mixture parameters from a samples set.
  1279. This variation starts with Maximization step. You need to provide initial probabilities
  1280. \(p_{i,k}\) to use this option.</div>
  1281. <dl>
  1282. <dt><span class="paramLabel">Parameters:</span></dt>
  1283. <dd><code>samples</code> - Samples from which the Gaussian mixture model will be estimated. It should be a
  1284. one-channel matrix, each row of which is a sample. If the matrix does not have CV_64F type
  1285. it will be converted to the inner matrix of such type for the further computing.</dd>
  1286. <dd><code>probs0</code> - the probabilities
  1287. each sample. It has \(nsamples \times 1\) size and CV_64FC1 type.
  1288. \(\texttt{labels}_i=\texttt{arg max}_k(p_{i,k}), i=1..N\) (indices of the most probable
  1289. mixture component for each sample). It has \(nsamples \times 1\) size and CV_32SC1 type.
  1290. mixture component given the each sample. It has \(nsamples \times nclusters\) size and
  1291. CV_64FC1 type.</dd>
  1292. <dt><span class="returnLabel">Returns:</span></dt>
  1293. <dd>automatically generated</dd>
  1294. </dl>
  1295. </li>
  1296. </ul>
  1297. <a name="trainM-org.opencv.core.Mat-org.opencv.core.Mat-org.opencv.core.Mat-">
  1298. <!-- -->
  1299. </a>
  1300. <ul class="blockList">
  1301. <li class="blockList">
  1302. <h4>trainM</h4>
  1303. <pre>public&nbsp;boolean&nbsp;trainM(<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;samples,
  1304. <a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;probs0,
  1305. <a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;logLikelihoods)</pre>
  1306. <div class="block">Estimate the Gaussian mixture parameters from a samples set.
  1307. This variation starts with Maximization step. You need to provide initial probabilities
  1308. \(p_{i,k}\) to use this option.</div>
  1309. <dl>
  1310. <dt><span class="paramLabel">Parameters:</span></dt>
  1311. <dd><code>samples</code> - Samples from which the Gaussian mixture model will be estimated. It should be a
  1312. one-channel matrix, each row of which is a sample. If the matrix does not have CV_64F type
  1313. it will be converted to the inner matrix of such type for the further computing.</dd>
  1314. <dd><code>probs0</code> - the probabilities</dd>
  1315. <dd><code>logLikelihoods</code> - The optional output matrix that contains a likelihood logarithm value for
  1316. each sample. It has \(nsamples \times 1\) size and CV_64FC1 type.
  1317. \(\texttt{labels}_i=\texttt{arg max}_k(p_{i,k}), i=1..N\) (indices of the most probable
  1318. mixture component for each sample). It has \(nsamples \times 1\) size and CV_32SC1 type.
  1319. mixture component given the each sample. It has \(nsamples \times nclusters\) size and
  1320. CV_64FC1 type.</dd>
  1321. <dt><span class="returnLabel">Returns:</span></dt>
  1322. <dd>automatically generated</dd>
  1323. </dl>
  1324. </li>
  1325. </ul>
  1326. <a name="trainM-org.opencv.core.Mat-org.opencv.core.Mat-org.opencv.core.Mat-org.opencv.core.Mat-">
  1327. <!-- -->
  1328. </a>
  1329. <ul class="blockList">
  1330. <li class="blockList">
  1331. <h4>trainM</h4>
  1332. <pre>public&nbsp;boolean&nbsp;trainM(<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;samples,
  1333. <a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;probs0,
  1334. <a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;logLikelihoods,
  1335. <a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;labels)</pre>
  1336. <div class="block">Estimate the Gaussian mixture parameters from a samples set.
  1337. This variation starts with Maximization step. You need to provide initial probabilities
  1338. \(p_{i,k}\) to use this option.</div>
  1339. <dl>
  1340. <dt><span class="paramLabel">Parameters:</span></dt>
  1341. <dd><code>samples</code> - Samples from which the Gaussian mixture model will be estimated. It should be a
  1342. one-channel matrix, each row of which is a sample. If the matrix does not have CV_64F type
  1343. it will be converted to the inner matrix of such type for the further computing.</dd>
  1344. <dd><code>probs0</code> - the probabilities</dd>
  1345. <dd><code>logLikelihoods</code> - The optional output matrix that contains a likelihood logarithm value for
  1346. each sample. It has \(nsamples \times 1\) size and CV_64FC1 type.</dd>
  1347. <dd><code>labels</code> - The optional output "class label" for each sample:
  1348. \(\texttt{labels}_i=\texttt{arg max}_k(p_{i,k}), i=1..N\) (indices of the most probable
  1349. mixture component for each sample). It has \(nsamples \times 1\) size and CV_32SC1 type.
  1350. mixture component given the each sample. It has \(nsamples \times nclusters\) size and
  1351. CV_64FC1 type.</dd>
  1352. <dt><span class="returnLabel">Returns:</span></dt>
  1353. <dd>automatically generated</dd>
  1354. </dl>
  1355. </li>
  1356. </ul>
  1357. <a name="trainM-org.opencv.core.Mat-org.opencv.core.Mat-org.opencv.core.Mat-org.opencv.core.Mat-org.opencv.core.Mat-">
  1358. <!-- -->
  1359. </a>
  1360. <ul class="blockListLast">
  1361. <li class="blockList">
  1362. <h4>trainM</h4>
  1363. <pre>public&nbsp;boolean&nbsp;trainM(<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;samples,
  1364. <a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;probs0,
  1365. <a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;logLikelihoods,
  1366. <a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;labels,
  1367. <a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;probs)</pre>
  1368. <div class="block">Estimate the Gaussian mixture parameters from a samples set.
  1369. This variation starts with Maximization step. You need to provide initial probabilities
  1370. \(p_{i,k}\) to use this option.</div>
  1371. <dl>
  1372. <dt><span class="paramLabel">Parameters:</span></dt>
  1373. <dd><code>samples</code> - Samples from which the Gaussian mixture model will be estimated. It should be a
  1374. one-channel matrix, each row of which is a sample. If the matrix does not have CV_64F type
  1375. it will be converted to the inner matrix of such type for the further computing.</dd>
  1376. <dd><code>probs0</code> - the probabilities</dd>
  1377. <dd><code>logLikelihoods</code> - The optional output matrix that contains a likelihood logarithm value for
  1378. each sample. It has \(nsamples \times 1\) size and CV_64FC1 type.</dd>
  1379. <dd><code>labels</code> - The optional output "class label" for each sample:
  1380. \(\texttt{labels}_i=\texttt{arg max}_k(p_{i,k}), i=1..N\) (indices of the most probable
  1381. mixture component for each sample). It has \(nsamples \times 1\) size and CV_32SC1 type.</dd>
  1382. <dd><code>probs</code> - The optional output matrix that contains posterior probabilities of each Gaussian
  1383. mixture component given the each sample. It has \(nsamples \times nclusters\) size and
  1384. CV_64FC1 type.</dd>
  1385. <dt><span class="returnLabel">Returns:</span></dt>
  1386. <dd>automatically generated</dd>
  1387. </dl>
  1388. </li>
  1389. </ul>
  1390. </li>
  1391. </ul>
  1392. </li>
  1393. </ul>
  1394. </div>
  1395. </div>
  1396. <!-- ========= END OF CLASS DATA ========= -->
  1397. <!-- ======= START OF BOTTOM NAVBAR ====== -->
  1398. <div class="bottomNav"><a name="navbar.bottom">
  1399. <!-- -->
  1400. </a>
  1401. <div class="skipNav"><a href="#skip.navbar.bottom" title="Skip navigation links">Skip navigation links</a></div>
  1402. <a name="navbar.bottom.firstrow">
  1403. <!-- -->
  1404. </a>
  1405. <ul class="navList" title="Navigation">
  1406. <li><a href="../../../overview-summary.html">Overview</a></li>
  1407. <li><a href="package-summary.html">Package</a></li>
  1408. <li class="navBarCell1Rev">Class</li>
  1409. <li><a href="package-tree.html">Tree</a></li>
  1410. <li><a href="../../../index-all.html">Index</a></li>
  1411. <li><a href="../../../help-doc.html">Help</a></li>
  1412. </ul>
  1413. <div class="aboutLanguage">
  1414. <script>
  1415. var url = window.location.href;
  1416. var pos = url.lastIndexOf('/javadoc/');
  1417. url = pos >= 0 ? (url.substring(0, pos) + '/javadoc/mymath.js') : (window.location.origin + '/mymath.js');
  1418. var script = document.createElement('script');
  1419. script.src = 'https://cdnjs.cloudflare.com/ajax/libs/mathjax/2.7.0/MathJax.js?config=TeX-AMS-MML_HTMLorMML,' + url;
  1420. document.getElementsByTagName('head')[0].appendChild(script);
  1421. </script>
  1422. </div>
  1423. </div>
  1424. <div class="subNav">
  1425. <ul class="navList">
  1426. <li><a href="../../../org/opencv/ml/DTrees.html" title="class in org.opencv.ml"><span class="typeNameLink">Prev&nbsp;Class</span></a></li>
  1427. <li><a href="../../../org/opencv/ml/KNearest.html" title="class in org.opencv.ml"><span class="typeNameLink">Next&nbsp;Class</span></a></li>
  1428. </ul>
  1429. <ul class="navList">
  1430. <li><a href="../../../index.html?org/opencv/ml/EM.html" target="_top">Frames</a></li>
  1431. <li><a href="EM.html" target="_top">No&nbsp;Frames</a></li>
  1432. </ul>
  1433. <ul class="navList" id="allclasses_navbar_bottom">
  1434. <li><a href="../../../allclasses-noframe.html">All&nbsp;Classes</a></li>
  1435. </ul>
  1436. <div>
  1437. <script type="text/javascript"><!--
  1438. allClassesLink = document.getElementById("allclasses_navbar_bottom");
  1439. if(window==top) {
  1440. allClassesLink.style.display = "block";
  1441. }
  1442. else {
  1443. allClassesLink.style.display = "none";
  1444. }
  1445. //-->
  1446. </script>
  1447. </div>
  1448. <div>
  1449. <ul class="subNavList">
  1450. <li>Summary:&nbsp;</li>
  1451. <li>Nested&nbsp;|&nbsp;</li>
  1452. <li><a href="#field.summary">Field</a>&nbsp;|&nbsp;</li>
  1453. <li>Constr&nbsp;|&nbsp;</li>
  1454. <li><a href="#method.summary">Method</a></li>
  1455. </ul>
  1456. <ul class="subNavList">
  1457. <li>Detail:&nbsp;</li>
  1458. <li><a href="#field.detail">Field</a>&nbsp;|&nbsp;</li>
  1459. <li>Constr&nbsp;|&nbsp;</li>
  1460. <li><a href="#method.detail">Method</a></li>
  1461. </ul>
  1462. </div>
  1463. <a name="skip.navbar.bottom">
  1464. <!-- -->
  1465. </a></div>
  1466. <!-- ======== END OF BOTTOM NAVBAR ======= -->
  1467. <p class="legalCopy"><small>Generated on 2023-06-28 12:47:21 / OpenCV 4.8.0</small></p>
  1468. </body>
  1469. </html>